L'amélioration du rendement des turboréacteurs requiert un accroissement de leur température de service. Le développement de nouveaux alliages, issus du système Nb-Si, permet d'envisager des températures de fonctionnement de 200°C supérieures à celles offertes par les superalliages base nickel utilisés actuellement. La première partie de ce manuscrit rappelle les principaux résultats scientifiques ayant menés à la sélection des alliages composites à base de siliciures de niobium (Nbss-Nb5Si3). La microstructure de ces alliages associe une matrice ductile de niobium pouvant solubiliser de nombreux éléments d'addition à une dispersion de siliciures durs et fragiles conférant aux alliages leurs bonnes propriétés en fluage et une meilleure résistance à l'oxydation à haute température. Malheureusement, ces alliages sont caractérisés par une récession rapide du métal associée au développement d'oxydes non protecteurs. L'oxygène réagit rapidement avec le substrat, se dissout dans la solution solide de niobium et y diffuse rapidement. L'effet des éléments Al, Si et Ti a été étudié en considérant à la fois les modifications microstructurales et les propriétés en oxydation lors de ces additions. Bien que ces optimisations de compositions conduisent à une amélioration significative de la résistance à l'oxydation des alliages Nbss-Nb5Si3, certaines nuances souffrent d'une résistance à l'oxydation catastrophique vers 800°C. L'ajout graduel d'étain au sein des alliages permet de modifier foncièrement la microstructure, notamment en initiant le développement d'une phase de type A15-Nb3Sn. A 800°C, l'étain supprime la dissolution de l'oxygène au sein de Nbss responsable du comportement en oxydation catastrophique rencontré par les nuances sans étain. Malgré ces progrès, la résistance à l'oxydation de ces alliages reste insuffisante et le développement de revêtements protecteurs contre l'oxydation a été nécessaire. Dans ce sens deux familles de siliciures Nb3X3CrSi6 et Nb4X4Si7 (X = Fe, Co ou Ni) ont été sélectionnées et leur stabilité thermodynamique ainsi que leur comportement en oxydation ont été évaluées. Ces phases se sont avérées capables de résister à l'oxydation à des températures d'exposition allant jusqu'à 1300°C. Le mécanisme d'oxydation de chacun de ces siliciures a été déterminé. Finalement, le dépôt de ces siliciures à la surface des alliages Nbss-Nb5Si3 via le procédé de pack cémentation s'est révélé possible. Les alliages revêtus par les siliciures choisis présentent des durées de vie pouvant aller jusqu'à 3000 cycles d'oxydation d'une heure à 1100°C / The improvement of the efficiency of turbine engine can be achieved by increasing the working temperature. The development of new alloys based on Nb-Si system allows a jump of 200°C of the operating temperature in comparison to that offered by current nickel based alloys. The first part of this manuscript focuses on the evolutions which have led to the development of niobium silicide in situ composites (Nbss-Nb5Si3). The microstructure of these alloys consists in a ductile niobium matrix where number of alloying elements can solubilise and of strengthening niobium silicides which are intended to provide creep and oxidation resistance at high temperature. Unfortunately, these alloys exhibit a poor oxidation resistance characterised by a high metal recession rate and the formation of non-protective oxide scale. Thus, oxygen can easily react with the substrate, dissolve in Nbss and diffuse quickly through this phase. The effect of Al, Si and Ti additions on both microstructure and oxidation resistance were investigated. Although, these composition optimisations lead to a significant enhance of oxidation resistance, some compositions still suffers from catastrophic oxidation behaviour around 800°C. In these alloys tin additions involve high microstructural changes, especially by initiating the formation of A15- Nb3Sn phase. At 800°C, Sn additions suppress oxygen dissolution in Nbss responsible of the catastrophic oxidation behaviour of these alloys. Nevertheless, the oxidation resistance of these alloys remains too low for the foreseen applications and protective coatings are required. Thermodynamic stability and oxidation resistance of two silicide families (Nb3X3CrSi6 and Nb4X4Si7 (X = Fe, Co or Ni)) were investigated. These silicides have exhibited a high oxidation resistance up to 1300°C by the formation of a protective silica layer. Finally, these silicides were deposited on Nbss-Nb5Si3 substrate by using the pack cementation process. Some coated alloys have then exhibited lifetime going up to 3000 one hour cycle at 1100°C
Identifer | oai:union.ndltd.org:theses.fr/2011NAN10127 |
Date | 23 September 2011 |
Creators | Knittel, Stéphane |
Contributors | Nancy 1, Vilasi, Michel, Mathieu, Stéphane |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0017 seconds