O objetivo deste trabalho é construir rigorosamente variedades de soluções definidas implicitamente por equações não-lineares em dimensão infinita. Usando um método de continuação a múltiplos parâmetros aplicado a uma projeção em dimensão finita, uma triangulação da variedade é construída e usada para construir localmente a variedade no espaço de dimensão infinita. Aplicamos este método para encontrar equilíbrio da equação de Cahn-Hilliard. Estudamos também bifurcações cúspides, com o objetivo de encontrar as condições necessárias para a existência das mesmas em qualquer dimensão finita. / The goal of this research is to rigorously compute implicitly defined manifolds of solutions of infinite dimensional nonlinear equations. Using a multi-parameter continuation method on a finite dimensional projection, a triangulation of the manifold is computed and is then used to construct local charts of the global manifold in the infinite dimensional domain of the operator. We apply this method to find the equilibria of the Cahn-Hilliard equation. We also studied cusp bifurcations, in order to find the necessary conditions for the existence of the same in any finite dimension.
Identifer | oai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-31012018-113548 |
Date | 01 November 2017 |
Creators | Cardozo, Camila Leão |
Contributors | Gameiro, Márcio Fuzeto |
Publisher | Biblioteca Digitais de Teses e Dissertações da USP |
Source Sets | Universidade de São Paulo |
Language | Portuguese |
Detected Language | Portuguese |
Type | Tese de Doutorado |
Format | application/pdf |
Rights | Liberar o conteúdo para acesso público. |
Page generated in 0.0019 seconds