Return to search

Evaluation And Modeling Of High-Voltage Cable Insulation Using A High-Voltage Impulse

Failure of underground cable on San Diego Gas & Electric's electric underground distribution system is an ever increasing problem. While there are a great number of cable diagnostic techniques available, none lend themselves to both an averaged and location specific, on-line implementation. This dissertation demonstrates the development of an on-line suitable technique that utilizes transients and Fast Fourier Transforms to determine a cable section?s impedance magnitude and phase angle as a function of frequency. Simultaneously a theoretical model was developed to simulate various scenarios that an in-service cable might experience. Significant effort was expended developing and optimizing the measurement and data analysis technique. This includes a statistical approach for comparing performance of different cable samples. Both the preliminary and final tests demonstrated the superiority of the frequency domain analysis over comparisons in the time domain. With the effort to date, there appears to be three distinct results: good cable, degraded cable and damaged cable. These differences are statistically significant at the 95% confidence level. Additionally, there appears to be good agreement between the theoretical model and actual test results. Consequently, this measurement methodology continues to hold promise for future practical development.

Identiferoai:union.ndltd.org:MSSTATE/oai:scholarsjunction.msstate.edu:td-2982
Date07 May 2005
CreatorsBialek, Thomas Owen
PublisherScholars Junction
Source SetsMississippi State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations

Page generated in 0.0015 seconds