Cache-oblivious algorithms are well understood when the cache size remains constant. Recently variable cache sizes have been considered. We are motivated by programs running in pseudo-parallel and competing for a single cache. This thesis studies the underlying cache model and gives a generalization of two models considered in the literature. We give a new cache model called the "depth model" where pages are accessed by page depths in an LRU cache instead of their ad- dresses. This model allows us to construct cache-oblivious algorithms that cause a certain number of cache misses prescribed by an arbitrary function computable without causing a cache miss. Finally we prove that two algorithms satisfying the regularity property running in pseudo-parallel cause asymptotically the same number of cache misses as their serial computations provided that the cache is satisfying the tall-cache assumption.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:355995 |
Date | January 2017 |
Creators | Král, Karel |
Contributors | Koucký, Michal, Mareš, Martin |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0021 seconds