Return to search

Effect of superoxide anion and hydrogen peroxide on CA₂⁺ mobilization in microvascular endothelial cells: a possible role of TRPM2.

Yau Ho Yan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 131-144). / Abstracts in English and Chinese. / DECLARATION --- p.I / ACKNOWLEDGEMENTS --- p.II / ENGLISH ABSTRACT --- p.III / CHINESE ABSTRACT --- p.VI / Chapter Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Oxidative Stress --- p.1 / Chapter 1.1.1 --- Historical Background of reactive oxygen/nitrogen species --- p.1 / Chapter 1.1.2 --- What is Oxidative Stress? --- p.3 / Chapter 1.1.3 --- Reactive Oxygen Species (ROS) --- p.4 / Chapter 1.1.3.1 --- Superoxide anion (02-) --- p.4 / Chapter 1.1.3.2 --- Hydrogen peroxide (H202) --- p.5 / Chapter 1.1.3.3 --- Hydroxyl radical --- p.6 / Chapter 1.1.3.4 --- Nitric oxide (NO) --- p.7 / Chapter 1.2 --- Cardiovascular System --- p.8 / Chapter 1.2.1 --- Enzymatic and Non-enzymatic Sources of ROS in Cardiovascular System --- p.8 / Chapter 1.2.1.1 --- NADPH oxidase --- p.8 / Chapter 1.2.1.2 --- Hypoxanthine-Xanthine oxidase (HX-XO) --- p.9 / Chapter 1.2.1.3 --- Nitric oxide synthase (NOS) --- p.10 / Chapter 1.2.1.4 --- Mitochondrial electron transport chain (ETC) --- p.11 / Chapter 1.2.1.5 --- Cyclooxygenase --- p.11 / Chapter 1.2.1.6 --- Lipoxygenae --- p.12 / Chapter 1.2.1.7 --- Endoplasmic reticulum --- p.12 / Chapter 1.2.2 --- ROS/RNS Scavenging Systems --- p.13 / Chapter 1.2.2.1 --- Superoxide dismutase (SOD) --- p.13 / Chapter 1.2.2.2 --- Catalase --- p.14 / Chapter 1.2.2.3 --- Glutathione peroxidase --- p.15 / Chapter 1.2.2.4 --- Non-enzymatic antioxidants --- p.15 / Chapter 1.2.3 --- Factors that stimulate ROS production in cardiovascular system --- p.18 / Chapter 1.2.3.1 --- Oxygen tension --- p.18 / Chapter 1.2.3.2 --- "Flow, Shear, and Stretch as an initial stimulus for endothelial oxidant signalling" --- p.18 / Chapter 1.2.3.3 --- Activation of rennin-angiotensin system promote oxidative stress in cardiovascular system --- p.19 / Chapter 1.2.3.4 --- Regulation of vascular ROS production by vasoactive substances --- p.19 / Chapter 1.2.4 --- Regulation of vascular tone in Cardiovascular System by ROS/RNS --- p.20 / Chapter 1.2.4.1 --- Regulation of vascular tone --- p.20 / Chapter 1.2.5 --- Pathophysiological Effects of ROS --- p.23 / Chapter 1.2.5.1 --- Cellular injury by lipid peroxidation --- p.23 / Chapter 1.2.5.2 --- Role of ROS in immune defence --- p.23 / Chapter 1.2.5.3 --- Redox regulation of cell adhesion --- p.24 / Chapter 1.2.6 --- Evidences from Clinical Studies of Oxidative Stress-Related Vascular Diseases --- p.25 / Chapter 1.2.6.1 --- Hyperlipidaemia --- p.25 / Chapter 1.2.6.2 --- Hypertension --- p.25 / Chapter 1.2.6.3 --- Chronic heart failure (CHF) --- p.26 / Chapter 1.2.6.4 --- Chronic renal failure (CRF) --- p.26 / Chapter 1.2.6.5 --- Atherosclerosis --- p.27 / Chapter 1.2.6.6 --- Ischemia/reperfusion (I/R) injury --- p.27 / Chapter 1.2.7 --- Role of Vascular Endothelium in Oxidative Stress --- p.29 / Chapter 1.2.8 --- Role of Ca in oxidative stress in cardiovascular system --- p.29 / Chapter 1.2.8.1 --- Calcium Signaling in Vascular Endothelial Cells --- p.30 / Chapter 1.2.9 --- ROS effect on endothelial Ca2+ --- p.31 / Chapter 1.2.9.1 --- Multiple targets of ROS on intracellular Ca2+ mobilization --- p.32 / Chapter 1.2.9.2 --- Reports of H202-induced Ca2+ release in various cell types --- p.33 / Chapter 1.2.9.3 --- Reported effects of H202 on agonist-induced Ca2+ signal --- p.34 / Chapter 1.2.9.4 --- Differences between macrovessels and microvessels --- p.34 / Chapter 1.3 --- TRP Channel --- p.41 / Chapter 1.3.1 --- Discovery of Drosophila TRP --- p.41 / Chapter 1.3.2 --- Mammalian TRP subfamily --- p.41 / Chapter 1.3.3 --- General topology of TRP channel --- p.42 / Chapter 1.3.4 --- Interactions of oxidative stress with TRP channels --- p.44 / Chapter 1.3.5 --- The role of TRPC3 and TRPC4 in oxidative stress --- p.44 / Chapter 1.3.6 --- TRPM subfamily --- p.44 / Chapter 1.3.6.1 --- Expression of TRPM2 --- p.45 / Chapter 1.3.6.2 --- Dual Role of TRPM´2ؤChannel and Enzyme --- p.45 / Chapter 1.3.6.3 --- Regulatory mechanisms of TRPM2 --- p.46 / Chapter 1.3.6.3.1 --- ADP-ribose (ADPR) directly regulating --- p.46 / Chapter 1.3.6.3.2 --- NAD regulating --- p.46 / Chapter 1.3.6.3.3 --- Oxidative stress regulating independent of ADPR or NAD --- p.47 / Chapter 1.4 --- Cell Death Induced by Oxidative Stress --- p.48 / Chapter 1.4.1 --- Redox status as a factor to determine cell death --- p.48 / Chapter 1.4.2 --- Role of TRPM2 in oxidative stress-induced cell death --- p.48 / Chapter 1.5 --- Aims of the Study --- p.49 / Chapter Chapter 2: --- Materials and Methods --- p.50 / Chapter 2.1 --- Functional Characterization of TRPM2 by Antisense Technique --- p.50 / Chapter 2.1.1 --- Restriction Enzyme Digestion --- p.50 / Chapter 2.1.2 --- Purification of Released Inserts and Cut pcDNA3 Vectors --- p.51 / Chapter 2.1.3 --- "Ligation of TRPM2 Genes into Mammalian Vector, pcDNA3" --- p.52 / Chapter 2.1.4 --- Transformation for the Desired Clones --- p.52 / Chapter 2.1.5 --- Plasmid DNA Preparation for Transfection --- p.53 / Chapter 2.1.6 --- Confirmation of the Clones --- p.53 / Chapter 2.1.6.1 --- Restriction Enzymes Strategy --- p.53 / Chapter 2.1.6.2 --- Polymerase Chain Reaction (PCR) Check --- p.54 / Chapter 2.1.6.3 --- Automated Sequencing --- p.55 / Chapter 2.2 --- Establishing Stable Cell Lines --- p.56 / Chapter 2.2.1 --- Cell Culture --- p.56 / Chapter 2.2.2 --- Geneticin Selection --- p.57 / Chapter 2.3 --- Expression of TRPM2 in Transfected and non-Transfected H5V Cells --- p.57 / Chapter 2.3.1 --- Protein Sample Preparation --- p.57 / Chapter 2.3.2 --- Western Blot Analysis --- p.58 / Chapter 2.3.3 --- Protein Expression Analysis --- p.59 / Chapter 2.4 --- "Immunolocalization of TRPM2 in Human Heart, Cerebral Artery, Renal, Hippocampus and Liver" --- p.59 / Chapter 2.4.1 --- Paraffin Section Preparation --- p.59 / Chapter 2.4.2 --- Immunohistochemistry --- p.60 / Chapter 2.5 --- [Ca2+ ]i Measurement in Confocal Microscopy --- p.62 / Chapter 2.5.1 --- Cytosolic Ca2+ measurement --- p.62 / Chapter 2.5.2 --- Measuring the Ca2+ in the Internal Calcium Stores --- p.63 / Chapter 2.5.3 --- Data Analysis --- p.64 / Chapter 2.6 --- Examining Cell Death Induced by H2O2 by DAPI Staining --- p.65 / Chapter 2.6.1 --- DAPI Staining --- p.65 / Chapter Chapter 3: --- Results --- p.66 / Chapter 3.1 --- Superoxide Anion-Induced [Ca 2+]i rise in H5V Mouse Heart Microvessel Endothelial Cells --- p.66 / Chapter 3.1.1 --- Superoxide Anion-induced [Ca2+ ]i Rise --- p.66 / Chapter 3.1.2 --- Effect of Catalase on the Superoxide Anion-induced [Ca2+]i]] Rise --- p.66 / Chapter 3.1.3 --- IP3R inhibitor Inhibits Superoxide anion-induced [Ca 2+]i Rise --- p.67 / Chapter 3.1.4 --- Effect of Phospholipase A2 Inhibitor on Superoxide anion- induced [Ca2+]i Rise --- p.67 / Chapter 3.1.5 --- Effect of Hydroxyl Radical Scavenger on Superoxide Anion- induced [Ca2+]i Rise --- p.68 / Chapter 3.2 --- Hydrogen Peroxide-induced Ca2+ Entry in Mouse Heart Microvessel Endothelial Cells --- p.74 / Chapter 3.2.1 --- Hydrogen Peroxide Induces [Ca2 +]i rise in H5V Mouse Heart Microvessel Endothelial Cells --- p.74 / Chapter 3.2.2 --- Hydrogen Peroxide Induces [Ca 2+]i rise in two phases (Rapid and Slow response) --- p.74 / Chapter 3.2.3 --- Hydrogen Peroxide Induces [Ca 2+]i rise in a Extracellular Ca + Concentration Dependent Manner --- p.77 / Chapter 3.3 --- Hydrogen Peroxide Reduces Agonist-induced [Ca2+]i rise --- p.79 / Chapter 3.3.1 --- Hydrogen Peroxide Reduces ATP-induced [Ca2+ ]i rise in a H2O2 Concentration Dependent Manner --- p.79 / Chapter 3.3.2 --- Hydrogen Peroxide Reduces ATP-induced [Ca 2+]i rise in a H2O2 Incubation Time Dependent Manner --- p.79 / Chapter 3.3.3 --- Hydrogen Peroxide Reduces the ATP-induced Intracellular Ca2+ Release --- p.80 / Chapter 3.3.4 --- XeC Inhibited H202-induced [Ca2+]i rise --- p.80 / Chapter 3.3.5 --- Hydrogen Peroxide Partially Depletes Internal Ca2+ Stores --- p.81 / Chapter 3.4 --- Dissecting Signal Transduction Pathways in H202-induced [Ca2+]i rise --- p.82 / Chapter 3.4.1 --- Effect of Phospholipase C Inhibitor on H202-induced [Ca2 +]i rise --- p.82 / Chapter 3.4.2 --- Effect of Phospholipase A2 Inhibitor on H202-induced [Ca 2+]i rise --- p.83 / Chapter 3.4.3 --- Effect of hydroxyl radical scavenger on H2O2-induced [Ca 2+]i rise --- p.83 / Chapter 3.5 --- Functional Role of TRPM2 Channel in H202-induced [Ca2+]i Rise in H5V Cells --- p.92 / Chapter 3.5.1 --- Expression of TRPM2 and the Effect of TRPM2 Antisense Construct on TRPM2 Protein Expression --- p.92 / Chapter 3.5.2 --- Effect of Antisense TRPM2 on H202-induced Ca2+ Entry --- p.94 / Chapter 3.6 --- H202-induced Cell Death --- p.101 / Chapter 3.7 --- Expression Pattern of TRPM2 Channel in Vascular System --- p.104 / Chapter 3.7.1 --- Immunolocalization of TRPM2 in Human Cerebral Arteries --- p.104 / Chapter 3.7.2 --- Immunolocalization of TRPM2 in Human Cardiac Muscles --- p.105 / Chapter 3.7.3 --- Immunolocalization of TRPM2 in Human Kidney --- p.105 / Chapter Chapter 4: --- Discussion --- p.113 / Chapter 4.1 --- Oxidative modification of Ca2+ homeostasis --- p.113 / Chapter 4.2 --- Pathophysiological effects of ROS on endothelium --- p.113 / Chapter 4.3 --- Effects of ROS on microvascular endothelial Ca2+ reported by other investigators --- p.115 / Chapter 4.4 --- Studies of the effect of HX-XO on cytosolic [Ca2+]i --- p.116 / Chapter 4.4.1 --- Role of 0´2Ø- and H202 in HX-XO-induced [Ca2+]i elevation --- p.116 / Chapter 4.4.2 --- IP3R involvement in HX-XO-evoked Ca + movements in H5V cells --- p.118 / Chapter 4.4.3 --- PLA2 involvement in HX-XO experiment --- p.119 / Chapter 4.5 --- Studies of the effect of direct H202 application on cytosolic [Ca2+]i --- p.120 / Chapter 4.5.1 --- Hydrogen Peroxide Induced [Ca2 +]i rise in a Extracellular Ca2 + Concentration Dependent Manner --- p.120 / Chapter 4.5.2 --- Hydrogen Peroxide Induced [Ca 2+]i rise in two phases (Rapid and Slow response) --- p.121 / Chapter 4.6 --- Effect of H202 on ATP-induced Ca2+ response --- p.121 / Chapter 4.6.1 --- H202 inhibited ATP-induced Ca2+ release in a concentration and time dependent manner --- p.121 / Chapter 4.6.2 --- IP3R involvement and store depletion in H202 experiment --- p.123 / Chapter 4.7 --- Dissecting Signal Transduction Pathways in H202-induced [Ca2+]i rise --- p.124 / Chapter 4.7.1 --- PLC involvement in H2O2 experiment --- p.124 / Chapter 4.7.2 --- PLA2 involvement in H2O2 experiment --- p.125 / Chapter 4.7.3 --- Hydroxyl radical did not involve in H2O2 experiment --- p.125 / Chapter 4.8 --- Functional Studies of TRPM2 --- p.127 / Chapter 4.8.1 --- Expression of TRPM2 in H5V on protein level --- p.127 / Chapter 4.8.2 --- TRPM2 involvement in the Ca2+ signalling in response to H2O2 in H5V cells --- p.127 / Chapter 4.9 --- H202 concentration in my projec´tؤphysiological or pathological? --- p.128 / Chapter 4.10. --- H20´2ؤTRPM´2ؤCell death --- p.129 / Chapter 4.11 --- Expression of TRPM2 in human blood vessels and other tissues --- p.130 / References --- p.131

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_325110
Date January 2005
ContributorsYau, Ho Yan., Chinese University of Hong Kong Graduate School. Division of Physiology.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, viii, 144 leaves : ill. ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0028 seconds