Machine learning is a rapidly growing field within artificial intelligence that an increasing number of individuals and corporations are beginning to utilize. In recent times, the financial sector has also started to recognize the potential of these techniques and methods. Nasdaq Clearing is responsible for managing the clearing business for the clearinghouse's members, and the objective of this thesis has been to explore the possibilities of using machine learning to replicate a subpart of the SPAN model's margin call calculations, known as initial margin, in the commodities market. The purpose of replicating SPAN's initial margin calculations is to open up for possibilities to create transparency and understanding in how the input variables affect the output. In the long run, we hope to broaden the insights on how one can use machine learning within the margin call processes. Various machine learning algorithms, primarily focused on regression tasks but also a few classification ones, have been employed to replicate the initial margin size. The primary objective of the methodology was to determine the algorithm that demonstrated the best performance in obtaining values that were as close as possible to the actual initial margin values. The findings revealed that a model composed of a combination of classification and regression, with non-parametric algorithms such as Random Forest and KNN, performed the best in both cases. Our conclusion is that the developed model possesses the ability to effectively compute the size of the initial margin and thus accomplishes its objective. / Maskininlärning är ett snabbt växande område inom artificiell intelligens som allt fler individer och företag börjar använda. Finanssektorn har nu också börjat undersöka hur dessa tekniker och metoder kan skapa värde. Nasdaq Clearing hanterar clearingverksamheten för clearinghusets medlemmar och syftet med denna uppsats har varit att undersöka möjligheterna att använda maskininlärning för att replikera en del av SPAN-modellens beräkningar av marginkravet som kallas Initial Marginal. Syftet med att replikera SPANs initiala marginberäkningar är att öppna upp för möjligheter att skapa transparens och förståelse för hur inputvariablernapåverkar outputen. På sikt hoppas vi kunna bredda insikterna hur maskininlärningslösningar skulle kunna användas inom "Margin Call"- processen. De metoder som användes för att replikera storleken på Initial Margin var olika maskininlärningsalgoritmer, främst fokuserade på regressionsuppgifter men några klassificeringsalgoritmer användes också. Fokus i metoden var att hitta vilken algoritm som presterade bäst, det vill säga den algoritm som predikterade närmst de faktiska värdena för Initial Margin. Resultatet visade sig vara en modell som kombinerade klassificering och regression, där icke-parametriska algoritmer såsom Random Forest och KNN var de som presterade bäst i båda fallen. Vår slutsats är att den utvecklade modellen har en god förmåga att beräkna storleken på Initial Margin och därmed uppfyller den sitt syfte.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-210804 |
Date | January 2023 |
Creators | Branestam, Clara, Sandgren, Amanda |
Publisher | Umeå universitet, Institutionen för matematik och matematisk statistik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | Swedish |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0015 seconds