Pedestrian detection is an important field with applications in active safety systems for cars as well as autonomous driving. Since autonomous driving and active safety are becoming technically feasible now the interest for these applications has dramatically increased.The aim of this thesis is to investigate convolutional neural networks (CNN) for pedestrian detection. The reason for this is that CNN have recently beensuccessfully applied to several different computer vision problems. The main applications of pedestrian detection are in real time systems. For this reason,this thesis investigates strategies for reducing the computational complexity offorward propagation for CNN.The approach used in this thesis for extracting pedestrians is to use a CNN tofind a probability map of where pedestrians are located. From this probabilitymap bounding boxes for pedestrians are generated. A method for handling scale invariance for the objects of interest has also been developed in this thesis. Experiments show that using this method givessignificantly better results for the problem of pedestrian detection.The accuracy which this thesis has managed to achieve is similar to the accuracy for some other works which use CNN.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-120019 |
Date | January 2015 |
Creators | Molin, David |
Publisher | Linköpings universitet, Datorseende, Linköpings universitet, Tekniska fakulteten |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0015 seconds