Return to search

Development of algorithms and architectures for driving assistance in adverse weather conditions using FPGAs

En raison de l'augmentation du volume et de la complexité des systèmes de transport, de nouveaux systèmes avancés d'assistance à la conduite (ADAS) sont étudiés dans de nombreuses entreprises, laboratoires et universités. Ces systèmes comprennent des algorithmes avec des techniques qui ont été étudiés au cours des dernières décennies, comme la localisation et cartographie simultanées (SLAM), détection d'obstacles, la vision stéréoscopique, etc. Grâce aux progrès de l'électronique, de la robotique et de plusieurs autres domaines, de nouveaux systèmes embarqués sont développés pour garantir la sécurité des utilisateurs de ces systèmes critiques. Pour la plupart de ces systèmes, une faible consommation d'énergie ainsi qu'une taille réduite sont nécessaires. Cela crée la contrainte d'exécuter les algorithmes sur les systèmes embarqués avec des ressources limitées. Dans la plupart des algorithmes, en particulier pour la vision par ordinateur, une grande quantité de données doivent être traitées à des fréquences élevées, ce qui exige des ressources informatiques importantes. Un FPGA satisfait cette exigence, son architecture parallèle combinée à sa faible consommation d'énergie et la souplesse pour les programmer permet de développer et d'exécuter des algorithmes plus efficacement que sur d'autres plateformes de traitement. Les composants virtuels développés dans cette thèse ont été utilisés dans trois différents projets: PICASSO (vision stéréoscopique), COMMROB (détection d'obstacles à partir d'une système multicaméra) et SART (Système d'Aide au Roulage tous Temps).

Identiferoai:union.ndltd.org:CCSD/oai:tel.archives-ouvertes.fr:tel-00771869
Date05 December 2012
CreatorsBotero-Galeano, Diego
PublisherINSA de Toulouse
Source SetsCCSD theses-EN-ligne, France
LanguageEnglish
Detected LanguageFrench
TypePhD thesis

Page generated in 0.0018 seconds