Return to search

Identificação e caracterização de pterígio utilizando floresta de caminhos ótimos e técnicas de otimização

Made available in DSpace on 2014-08-13T14:50:32Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-11-04Bitstream added on 2014-08-13T18:01:18Z : No. of bitstreams: 1
pagnin_af_me_sjrp.pdf: 656654 bytes, checksum: a36c07c3e11274be048901638e7344ba (MD5) / Neste trabalho abordamos o problema de identificação e caracterização do pterígio, uma neo-formação conjuntival triangular ou trapezoidal benigna, com causa exata ainda não definida, que potencialmente pode acarretar cegueira, como um primeiro passo para a criação de um sistema espe-cialista para auxílio ao diagnóstico utilizando a técnica de reconhecimento de padrões denominada Floresta de Caminhos Ótimos (OPF). Para a caracterização da doença, propomos a utilização de três técnicas de seleção de características as quais buscaram reduzir a quantidade de características utilizadas no reconhecimento, sem todavia, projudicar a acurácia do classificador. Essas técnicas nasceram da junção do OPF com técnicas de otimização já existentes como Otimização por Enxame de Partículas (PSO), Busca Harmônica (BH) e Algoritmo de Busca Gravitacional(GSA), resultando nos algoritmos híbridos PSO-OPF, BH-OPF e GSA-OPF, respectivamente. O banco de dados utili-zado neste trabalho é proveniente de um Projeto da Faculdade de Medicina da UNESP de Botucatu que visou a criação de uma Unidade Móvel para atendimento oftalmológico à comunidades da região de Botucatu. Esse banco de dados possui 89 características de 7,654 pacientes dos quais 682 são acometidos por pterígio e os 6,972 restantes não possuem a doença. As técnicas foram aplicadas à esse Banco de dados em dois momentos distintos. Inicialmente, buscando a identificação da doença, aplicamos o OPF juntamente com outros nove classificadores buscando somente a identificação do pterígio, dividindo a base de dados em 50 % para treinamento dos classificadores e os 50 % restantes para a classificação dos dados, num ciclo repetido 10 vezes, com esses conjuntos treinamento e classificação gerados aleatoriamente... (Resumo completo, clicar acesso eletrônico abaixo)

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.unesp.br:11449/108385
Date04 November 2011
CreatorsPagnin, André Franco [UNESP]
ContributorsUniversidade Estadual Paulista (UNESP), Papa, João Paulo [UNESP], Schellini, Silvana Artioli [UNESP]
PublisherUniversidade Estadual Paulista (UNESP)
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis
Format70 f. : il.
SourceAleph, reponame:Repositório Institucional da UNESP, instname:Universidade Estadual Paulista, instacron:UNESP
Rightsinfo:eu-repo/semantics/openAccess
Relation-1, -1, -1

Page generated in 0.0017 seconds