Ces dernières années, le transport de marchandises est devenu un défi logistique à multiples facettes. L’immense volume de fret a considérablement augmenté le flux de marchandises dans tous les modes de transport. Malgré le rôle vital du transport de marchandises dans le développement économique, il a également des répercussions négatives sur l’environnement et la santé humaine. Dans les zones locales et régionales, une partie importante des livraisons de marchandises est transportée par camions, qui émettent une grande quantité de polluants. Le Transport routier de marchandises est un contributeur majeur aux émissions de gaz à effet de serre (GES) et à la consommation de carburant. Au Canada, les principaux réseaux routiers continuent de faire face à des problèmes de congestion. Pour réduire significativement l’impact des émissions de GES reliées au transport de marchandises sur l’environnement, de nouvelles stratégies de planification directement liées aux opérations de routage sont nécessaires aux niveaux opérationnel, environnemental et temporel. Dans les grandes zones urbaines, les camions doivent voyager à la vitesse imposée par la circulation. Les embouteillages ont des conséquences défavorables sur la vitesse, le temps de déplacement et les émissions de GES, notamment à certaines périodes de la journée. Cette variabilité de la vitesse dans le temps a un impact significatif sur le routage et la planification du transport. Dans une perspective plus large, notre recherche aborde les Problèmes de distribution temporels (Time-Dependent Distribution Problems – TDDP) en considérant des chemins dynamiques dans le temps et les émissions de GES. Considérant que la vitesse d’un véhicule varie en fonction de la congestion dans le temps, l’objectif est de minimiser la fonction de coût de transport total intégrant les coûts des conducteurs et des émissions de GES tout en respectant les contraintes de capacité et les restrictions de temps de service. En outre, les informations géographiques et de trafic peuvent être utilisées pour construire des multigraphes modélisant la flexibilité des chemins sur les grands réseaux routiers, en tant qu’extension du réseau classique des clients. Le réseau physique sous-jacent entre chaque paire de clients pour chaque expédition est explicitement considéré pour trouver des chemins de connexion. Les décisions de sélection de chemins complètent celles de routage, affectant le coût global, les émissions de GES, et le temps de parcours entre les nœuds. Alors que l’espace de recherche augmente, la résolution des Problèmes de distribution temporels prenant en compte les chemins dynamiques et les vitesses variables dans le temps offre une nouvelle possibilité d’améliorer l’efficacité des plans de transport... Mots clés : Routage dépendant du temps; chemins les plus rapides dépendant du temps; congestion; réseau routier; heuristique; émissions de gaz à effet de serre; modèles d’émission; apprentissage supervisé / In recent years, freight transportation has evolved into a multi-faceted logistics challenge. The immense volume of freight has considerably increased the flow of commodities in all transport modes. Despite the vital role of freight transportation in the economic development, it also negatively impacts both the environment and human health. At the local and regional areas, a significant portion of goods delivery is transported by trucks, which emit a large amount of pollutants. Road freight transportation is a major contributor to greenhouse gas (GHG) emissions and to fuel consumption. To reduce the significant impact of freight transportation emissions on environment, new alternative planning and coordination strategies directly related to routing and scheduling operations are required at the operational, environmental and temporal dimensions. In large urban areas, trucks must travel at the speed imposed by traffic, and congestion events have major adverse consequences on speed level, travel time and GHG emissions particularly at certain periods of day. This variability in speed over time has a significant impact on routing and scheduling. From a broader perspective, our research addresses Time-Dependent Distribution Problems (TDDPs) considering dynamic paths and GHG emissions. Considering that vehicle speeds vary according to time-dependent congestion, the goal is to minimize the total travel cost function incorporating driver and GHG emissions costs while respecting capacity constraints and service time restrictions. Further, geographical and traffic information can be used to construct a multigraph modeling path flexibility on large road networks, as an extension to the classical customers network. The underlying physical sub-network between each pair of customers for each shipment is explicitly considered to find connecting road paths. Path selection decisions complement routing ones, impacting the overall cost, GHG emissions, the travel time between nodes, and thus the set of a feasible time-dependent least cost paths. While the search space increases, solving TDDPs considering dynamic paths and time-varying speeds may provide a new scope for enhancing the effectiveness of route plans. One way to reduce emissions is to consider congestion and being able to route traffic around it. Accounting for and avoiding congested paths is possible as the required traffic data is available and, at the same time, has a great potential for both energy and cost savings. Hence, we perform a large empirical analysis of historical traffic and shipping data. Therefore, we introduce the Time-dependent Quickest Path Problem with Emission Minimization, in which the objective function comprises GHG emissions, driver and congestion costs. Travel costs are impacted by traffic due to changing congestion levels depending on the time of the day, vehicle types and carried load. We also develop time-dependent lower and upper bounds, which are both accurate and fast to compute. Computational experiments are performed on real-life instances that incorporate the variation of traffic throughout the day. We then study the quality of obtained paths considering time-varying speeds over the one based only on fixed speeds... Keywords : Time-dependent routing; time-dependent quickest paths; traffic congestion; road network; heuristic; greenhouse gas emissions; emission models; supervised learning.
Identifer | oai:union.ndltd.org:LAVAL/oai:corpus.ulaval.ca:20.500.11794/32805 |
Date | 05 December 2018 |
Creators | Heni, Hamza |
Contributors | Renaud, Jacques, Coelho, Leandro C. |
Source Sets | Université Laval |
Language | English |
Detected Language | French |
Type | thèse de doctorat, COAR1_1::Texte::Thèse::Thèse de doctorat |
Format | 1 ressource en ligne (xix, 130 pages), application/pdf |
Rights | http://purl.org/coar/access_right/c_abf2 |
Page generated in 0.0033 seconds