A primeira parte deste trabalho é dedicada ao estudo de sistemas dinâmicos contínuos e discretos bidimensionais com um único ponto de equillíbrio que é do tipo sela hiperbólica. No caso contínuo, obtemos condições sufiientes para que um campo vetorial planar seja topologicamente equivalente à sela linear L(x; y) = (-x; y). No caso em que o campo vetorial é um difeomorfismo local, a injetividade do campo jogará um papel fundamental na obtenção de tal equivalência topológica. Além disto, apresentamos uma descrição das folheações do plano associadas a campos de vetores com uma única singularidade do tipo sela hiperbólica. No âmbito dos sistemas discretos, apresentamos condições para que um difeomorfismo, possuindo uma sela hiperbólica como único ponto fixo, satisfaça as propriedades básicas de um sistema linear com um ponto fixo que é do tipo sela hiperbólica: as quatro separatrizes do ponto fixo se acumulam só no infinito e os iterados dos pontos que não estão nas variedades invariantes deste ponto fixo se acumulam no infinito tanto no passado quanto no futuro. A segunda parte deste texto, se dedica a problemas de injetividade de difeomorfismos locais em \'R POT. n\'. Mais especificamente, obtemos versões fracas da Conjetura Jacobiana Real de Jelonek e de uma Conjetura apresentada por Nollet e Xavier. Ambos problemas estão intimamente ligados à famosa Conjetura Jacobiana, que foi considerada por Smale em 1998 como um dos dezoito problemas matemáticos mais relevantes ainda em aberto / The first part of this work is dedicated to the study of continuous and discrete twodimensional dynamical systems with a unique equilibrium point which is a hyperbolic saddle. In the continuous case, we obtain sufficient conditions for a planar vector field be topologically equivalent to the linear saddle L(x; y) = (-x; y). In the case where the vector field is a local diffeomorphism, the injectivity of the field will play a key role in obtaining such a topological equivalence. Furthermore, we provide a description of foliations of the plane vector fields associated with a unique singularity of hyperbolic saddle type. In the context of discrete systems, we present conditions for a diffeomorphism, possessing a hyperbolic saddle as the single fixed point, to satisfy the basic properties of a linear system with a fixed point of saddle type which is hyperbolic: the four separatrices of the fixed point accumulate only at infinity and iterated the points that are not in invariant manifolds of this fixed point accumulate in infinity in both the past and future. The second part of this text is devoted to problems of injectivity of local diffeomorphisms on \'R POT. n\'. More specifically, we obtain weaker versions of the Jelonek\'s Real Jacobian Conjecture and a Conjecture given by Nollet and Xavier. Both problems are closely linked to the famous Jacobian Conjecture, which was considered by Smale in 1998 as one of eighteen mathematical problems even more important in open
Identifer | oai:union.ndltd.org:IBICT/oai:teses.usp.br:tde-16032011-160652 |
Date | 15 February 2011 |
Creators | Jean Venato Santos |
Contributors | Carlos Alberto Maquera Apaza, Jose Andres Martinez Alfaro, Jose Andres Martinez Alfaro, Alexandre César Gurgel Fernandes, Andrés Koropecki, Marco Antonio Teixeira |
Publisher | Universidade de São Paulo, Matemática, USP, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | English |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis |
Source | reponame:Biblioteca Digital de Teses e Dissertações da USP, instname:Universidade de São Paulo, instacron:USP |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0023 seconds