Return to search

An Isomorphism Theorem for Graphs

In the 1970’s, L. Lovász proved that two graphs G and H are isomorphic if and only if for every graph X , the number of homomorphisms from X → G equals the number of homomorphisms from X → H . He used this result to deduce cancellation properties of the direct product of graphs. We develop a result analogous to Lovász’s theorem, but in the class of graphs without loops and with weak homomorphisms. We apply it prove a general cancellation property for the strong product of graphs.

Identiferoai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-2951
Date01 December 2009
CreatorsCulp, Laura
PublisherVCU Scholars Compass
Source SetsVirginia Commonwealth University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceTheses and Dissertations
Rights© The Author

Page generated in 0.0017 seconds