Return to search

High-Resolution Carbon Isotope Stratigraphy, Pennsylvanian Snaky Canyon Formation, East-Central Idaho: Implications for Regional and Global Correlations

Nearly 550 samples of fine grained carbonates, collected every 0.5 to 1.0 m from the Bloom Member of the Snaky Canyon Formation at Gallagher Peak, Idaho, were analyzed to determine the high-resolution carbon isotope stratigraphy. To constrain for diagenesis, thin sections were petrographically analyzed and viewed using cathodoluminescence microscopy. Chemical analyses were performed using an electron microprobe.

Average delta18O and delta13C values from the Bloom Member are -4.5% +/- 1.6% (1 sigma) and 2.1% +/- 1.1%, respectively. Maximum delta13C values are about 1% higher for the Desmoinesian and Missourian than the Morrowan and Atokan, similar to results from the Yukon Territory. delta18O and delta13C values are lowest for crystalline mosaic limestones and siltstones, moderate for packstones, wackestones, and mudstones, and highest for boundstones and grainstones.

The delta13C profile from Gallagher Peak consists of high frequency 1% oscillations with several larger excursions. No large delta13C increase at the base of the section suggests the Mid-Carboniferous boundary is in the underlying Bluebird Mountain formation. delta13C of Gallagher Peak and Arrow Canyon, NV, correlate well from 318 to 310 Ma, but correlation becomes more difficult around 310 Ma. This may result from increased restriction of the Snaky Canyon platform beginning in the Desmoinesian. Most of the short term (<1 Ma) isotopic excursions are the result of diagenesis. Two of the largest negative excursions at Gallagher Peak correlate with two large negative excursions at Big Hatchet Peak, NM, possibly due to sea level lowstands of the Desmoinesian. Phylloid algal mounds at Gallagher Peak are associated with positive excursions because of original aragonite composition and increased open marine influence. Positive excursions related to other facies characteristics also result from increased marine influence. The delta13C curve for the upper half of Gallagher Peak contains three repeated cycles of increasing delta13C over 1-1.5 Ma, which are possibly related to long-term sea level fluctuations. Given the complexity of each local environment, without detailed biostratigraphy, detailed rock descriptions, and analysis of the various rock components, delta13C stratigraphy of whole rocks can be misinterpreted.

Identiferoai:union.ndltd.org:tamu.edu/oai:repository.tamu.edu:1969.1/ETD-TAMU-2012-05-10718
Date2012 May 1900
CreatorsJolley, Casey
ContributorsPope, Michael G.
Source SetsTexas A and M University
Languageen_US
Detected LanguageEnglish
Typethesis, text
Formatapplication/pdf

Page generated in 0.0017 seconds