Made available in DSpace on 2016-06-02T19:56:57Z (GMT). No. of bitstreams: 1
6597.pdf: 4764954 bytes, checksum: 5414abc6292e5e2fc5ec8124840f6a6b (MD5)
Previous issue date: 2015-02-20 / Universidade Federal de Sao Carlos / In this work, different commercial carbon materials that could be used as electrodes for capacitive deionization were investigated: carbon cloth, carbon foam, carbon felt, carbon fiber, carbon veil and activated carbon powder (AC). The materials were characterized by scanning electron microscopy (SEM), surface resistivity, wettability and cyclic voltammetry (CV). The performance in terms of electrosorption of NaCl was evaluated for different cell potentials. The AC electrode showed the best capacity of removing ions, and presented good values of charge efficiency (QE) and specific energy consumption (η) and, thusly, it was chosen to be modified using different techniques in an attempt to improve its characteristics aiming better results of electrosorption. Part of the strategies was the addition of carbon black and sodium chloride in order to improve the electrode conductivity and its macroporosity, respectively. A factorial experimental design was used to evaluate the effect of the AC mass, NA, mass of sodium chloride used in the electrode preparation and also the cell potential, on the capacity of removing ions (R), QE and η. The variables that showed the greatest effect on the CDI process was the cell potential and the AC mass (that create different thickness for the electrode). In spite of increasing the electrode conductivity, the NA did not show any improvement on the electrosorption of the electrode. Afterwards, an individual analysis showed that the use of sodium chloride to increase electrode macroporisity improved the capacity of the electrode to remove ions but just for the thickest electrode. However, it was verified that the increase of the thickness did not implied in a linear increase of the ion removal capacity. This behavior may be attributed to the non-uniform distribution of the electric field on the porous film. Thusly, even the thicker electrode showing a better capacity of removing ions, a great part of its mass was not being used for electrosorption. Additionally, the increase of the thickness led to a decrease on desorption. Those results indicate that the electrode thickness must be optimized. Another strategy to improve the electrode wettability and capacitance was the deposition of silica and alumina. It was observed an improvement on the wettability of the electrode, however those electrodes voltammograms showed an increase on the resistivity and as result, besides not presenting any improvement on the capacity of electrosorption, there was still a reduction of the ion removal kinect. Finally, the last strategy used to improve the AC electrode was the addition of the conducting polymer polypyrrole aiming to improve the electrode capacity of removing ions through the pseudo capacitance effect. The addition of polypyrrole increased the total of ions removed from solution, however, in all the cases, the values of QE and η were worse than those observed for the AC electrode. Due to the polypyrrole characteristics, the drying temperature used to prepare the electrode was reduced from 130°C to 80°C and when this temperature was reduced, it was verified that this variable had a strong effect on improving the capacity of removing ions and the energy efficiency of the AC electrode. / Neste trabalho foi realizado o estudo de diferentes materiais de carbono disponíveis comercialmente e que poderiam ser utilizados como eletrodos para deionização capacitiva. Dentre eles estão o tecido de carvão ativado, espuma de carbono, feltro de carbono, fibra de carbono, véu de carbono e pó de carvão ativado (CA). Esses materiais foram caracterizados por microscopia eletrônica de varredura, resistividade superficial, molhabilidade e voltametria cíclica. O desempenho dos diferentes eletrodos em termos da eletrossorção de cloreto de sódio foi avaliado para diferentes potenciais de célula. O material que apresentou melhor capacidade de remoção de íons e ao mesmo tempo apresentando bons valores de eficiência de carga (QE) e consumo energético específico (η) foi o eletrodo preparado usando pó carvão ativado. Desta forma, este material foi selecionado para estudos posteriores em que diferentes estratégias de modificação deste eletrodo foram avaliadas para tentar otimizar suas características visando melhores resultados de eletrossorção. Dentre essas estratégias, adicionou-se negro de acetileno e cloreto de sódio na preparação do eletrodo visando melhorar sua condutividade e aumentar sua macroporosidade, respectivamente. Um planejamento fatorial de experimentos foi utilizado a fim de verificar o efeito da massa de CA, negro de acetileno e cloreto de sódio usadas na preparação do eletrodo e também do potencial de célula sobre as variáveis dependentes remoção total de íons (R), QE e η. Observou-se nesta etapa que as variáveis que tiveram o maior efeito no processo de deionização capacitiva foram o potencial de célula e a massa do eletrodo (que por sua vez determina a sua espessura). Constatou-se que a adição de negro de acetileno ao eletrodo, apesar de aumentar a condutividade (como já era esperado), causava uma diminuição da área superficial específica através do entupimento de poros e como consequência, não verificou-se melhoria da eletrossorção, algo que seria esperado pela melhoria da condutividade do eletrodo. Posteriormente, foi realizada uma análise individual do efeito da macroporosidade e da espessura de eletrodo. Os resultados mostraram que o aumento da macroporosidade decorrente do uso de NaCl durante a preparação do eletrodo levou a um aumento da capacidade de eletrossorção somente para o eletrodo mais espesso, porém, na análise da influência do aumento da espessura do eletrodo, verificou-se que não houve um aumento linear na quantidade de íons removidos da solução em função do aumento da espessura, o que pode ser atribuído à nãouniformidade do campo elétrico no filme poroso. Desta forma, apesar do filme mais espesso ter capacidade de remover mais íons, uma grande parte da massa de CA utilizada estava inativa. Adicionalmente, o aumento da espessura levou a uma diminuição da cinética de dessorção. Estes resultados indicam que a espessura do eletrodo deve ser otimizada. Uma outra estratégia analisada para tentar melhorar a molhabilidade e a capacidade de eletrossorção do eletrodo de CA foi a deposição de sílica e alumina. Observouse que houve realmente uma melhoria da molhabilidade, mas por outro lado, os voltamogramas destes eletrodos mostraram um aumento de sua resistividade e como consequência, além de não se verificar uma melhoria na capacidade de eletrossorção, houve ainda uma piora da cinética do processo. Finalmente, a última estratégia utilizada para melhorar o eletrodo de CA foi a adição do polímero condutor polipirrol visando melhorar sua capacidade de remoção de íons através da introdução de pseudocapacitância. A adição de polipirrol causou um leve aumento no total de íons removidos da solução, porém, em todos os casos, os valores de QE e η foram piores do aqueles observados para o eletrodo de CA. Devido às característicos do polipirrol, a temperatura de secagem do eletrodo teve que ser reduzida de 130°C para 80°C e quando se reduziu esta temperatura verificou-se que esta variável desempenhava um papel importante na melhoria da capacidade de remoção de íons e da eficiência energética do eletrodo de CA.
Identifer | oai:union.ndltd.org:IBICT/oai:repositorio.ufscar.br:ufscar/4155 |
Date | 20 February 2015 |
Creators | Zornitta, Rafael Linzmeyer |
Contributors | Ruotolo, Luís Augusto Martins |
Publisher | Universidade Federal de São Carlos, Programa de Pós-graduação em Engenharia Química, UFSCar, BR |
Source Sets | IBICT Brazilian ETDs |
Language | Portuguese |
Detected Language | Portuguese |
Type | info:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/masterThesis |
Format | application/pdf |
Source | reponame:Repositório Institucional da UFSCAR, instname:Universidade Federal de São Carlos, instacron:UFSCAR |
Rights | info:eu-repo/semantics/openAccess |
Page generated in 0.0082 seconds