Return to search

Advanced Carbon Materials for Environmental and Energy Applications

Carbon based materials, including porous carbons and carbon layer composites, are finding increased usage in latest environmental and energy related research. Among porous carbon materials, hierarchical porous carbons with multi-modal porosity are proving out to be an effective solution for applications where the traditional activated carbons fail. Thus, there has been a lot of recent interest in developing low-cost, facile, easy to scale-up, synthesis techniques for producing such multi-modal porous carbons. This dissertation offers two novel synthesis techniques: (i) ice templating integrated with hard templating, and (ii) salt templating coupled with hard templating, for producing such hierarchically porous carbons. The techniques offer tight control and tunability of porosity (macro- meso- and microscale) in terms of both size and extent. The synthesized multi-modal porous carbons are shown to be an effective solution for three important environment related applications – (i) Carbon dioxide capture using amine supported hierarchical porous carbons, (ii) Reduction in irreversible fouling of membranes used for wastewater reuse through a deposition of a layer of hierarchical porous carbons on the membrane surface, (iii) Electrode materials for electrosorptive applications. Finally, because of their tunability, the synthesized multi-modal porous carbons serve as excellent model systems for understanding the effect of different types of porosity on the performance of porous carbons for these applications. Also, recently, there has been a lot of interest in developing protective layer coatings for preventing photo-corrosion of semiconductor structures (in particular Cu2O) used for photoelectrochemical water splitting. Most of the developed protective strategies to date involve the use of metals or co-catalyst in the protective layer. Thus there is a big need for developing low-cost, facile and easy to scale protective coating strategies. Based on the expertise gained in synthesizing porous carbon materials, and owing to our group’s interest in developing suitable photoelectrode materials, this dissertation also proposes a novel carbon-Cu2O composite comprising of a carbon layer coated Cu2O nanowire array structure as a high performance and stable photoelectrode material for photoelectrochemical water splitting.

Identiferoai:union.ndltd.org:kaust.edu.sa/oai:repository.kaust.edu.sa:10754/317746
Date05 1900
CreatorsDua, Rubal
ContributorsWang, Peng, Biological and Environmental Sciences and Engineering (BESE) Division, Amy, Gary L., Giannelis, Emmanuel P., Lai, Zhiping
Source SetsKing Abdullah University of Science and Technology
LanguageEnglish
Detected LanguageEnglish
TypeDissertation

Page generated in 0.0011 seconds