Preparative-scale protein separations have always been critical to the advancement of the life sciences. Among preparative-scale separation techniques, isoelectric trapping (IET) promises efficient separations and high production rates. This dissertation focuses on the improvement of two aspects of preparative-scale IET protein separations: the instrumentation used and the monitoring of the separation. The first aspect (preparative-scale) is the IET device: the improvement of a multicompartmental electrolyzer (MCE) to increase the efficiency and production rate of IET separations. The redesign focused on three major areas: (1) the sealing system, (2) the configuration of the liquid flow path, and (3) the cooling system. The second aspect (analytical-scale) is the monitoring of the IET separation: the design and manufacture of durable surface-modified capillaries which provide controlled, variable anodic and cathodic electroosmotic flow (EOF) to help develop, plan, and monitor the IET separations.
Identifer | oai:union.ndltd.org:TEXASAandM/oai:repository.tamu.edu:1969.1/ETD-TAMU-1438 |
Date | 15 May 2009 |
Creators | Sinajon, Joseph Brian Montejo |
Contributors | Vigh, Gyula, Glover, Charles, Schweikert, Emile, Soriaga, Manuel |
Source Sets | Texas A and M University |
Language | en_US |
Detected Language | English |
Type | thesis, text |
Format | electronic, application/pdf, born digital |
Page generated in 0.0017 seconds