BACKGROUND Aortic stenosis is a common and potentially fatal condition in which fibro-calcific changes within the valve leaflets lead to the obstruction of blood flow. Severe symptomatic stenosis is an indication for aortic valve replacement and timely referral is essential to prevent adverse clinical events. Calcification is believed to represent the central process driving disease progression. 18F-Fluoride positron emission tomography computed tomography (PET-CT) and CT aortic valve calcium scoring (CT-AVC) quantify calcification activity and burden respectively. The overarching aim of this thesis was to evaluate the applications of these techniques to the study and management of aortic stenosis. METHODS AND RESULTS REPRODUCIBILITY The scan-rescan reproducibility of 18F-fluoride PET-CT and CT-AVC were investigated in 15 patients with mild, moderate and severe aortic stenosis who underwent repeated 18F-fluoride PET-CT scans 3.9±3.3 weeks apart. Modified techniques enhanced image quality and facilitated clear localization of calcification activity. Percentage error was reduced from ±63% to ±10% (tissue-to-background ratio most-diseased segment (MDS) mean of 1.55, bias -0.05, limits of agreement - 0·20 to +0·11). Excellent scan-rescan reproducibility was also observed for CT-AVC scoring (mean of differences 2% [limits of agreement, 16 to -12%]). AORTIC VALVE CALCIUM SCORE: SINGLE CENTRE STUDY Sex-specific CT-AVC thresholds (2065 in men and 1271 in women) have been proposed as a flow-independent technique for diagnosing severe aortic stenosis. In a prospective cohort study, the impact of CT-AVC scores upon echocardiographic measures of severity, disease progression and aortic valve replacement (AVR)/death were examined. Volunteers (20 controls, 20 with aortic sclerosis, 25 with mild, 33 with moderate and 23 with severe aortic stenosis) underwent CT-AVC and echocardiography at baseline and again at either 1 or 2-year time-points. Women required less calcification than men for the same degree of stenosis (p < 0.001). Baseline CT-AVC measurements appeared to provide the best prediction of subsequent disease progression. After adjustment for age, sex, peak aortic jet velocity (Vmax) ≥ 4m/s and aortic valve area (AVA) < 1 cm2, the published CT-AVC thresholds were the only independent predictor of AVR/death (hazard ratio = 6.39, 95% confidence intervals, 2.90-14.05, p < 0.001). AORTIC VALVE CALCIUM SCORE: MULTICENTRE STUDY CT-AVC thresholds were next examined in an international multicenter registry incorporating a wide range of patient populations, scanner vendors and analysis platforms. Eight centres contributed data from 918 patients (age 77±10, 60% male, Vmax 3.88±0.90 m/s) who had undergone ECG-gated CT within 3 months of echocardiography. Of these 708 (77%) had concordant echocardiographic assessments, in whom our own optimum sex-specific CT-AVC thresholds (women 1377, men 2062 AU) were nearly identical to those previously published. These thresholds provided excellent discrimination for severe stenosis (c-statistic: women 0.92, men 0.88) and independently predicted AVR and death after adjustment for age, sex, Vmax ≥4 m/s and AVA < 1 cm2 (hazards ratio, 3.02 [95% confidence intervals, 1.83-4.99], p < 0.001). In patients with discordant echocardiographic assessments (n=210), CT-AVC thresholds predicted an adverse prognosis. BICUSPID AORTIC VALVES Within the multicentre study, higher continuity-derived estimates of aortic valve area were observed in patients with bicuspid valves (n=68, 1.07±0.35 cm) compared to those with tri-leaflet valves (0.89±0.36 cm p < 0.001,). This was despite no differences in measurements of Vmax (p=0.152), or CT-AVC scores (p=0.313). The accuracy of AVA measurments in bicuspid valves was therefore tested against alternative markers of disease severity. AVA measurements in bicuspid valves demonstrated extremely weak associations with CT-AVC scores (r2=0.08, p=0.02) and failed to correlate with downstream markers of disease severity in the valve and myocardium and against clinical outcomes. AVA measurements in bicuspid patients also failed to independently predict AVR/death after adjustment for Vmax ≥4 m/s, age and gender. In this population CT-AVC thresholds (women 1377, men 2062 AU) again provided excellent discrimination for severe stenosis. CONCLUSIONS Optimised 18F-fluoride PET-CT scans quantify and localise calcification activity, consolidating its potential as a biomarker or end-point in clinical trials of novel therapies. CT calcium scoring of aortic valves is a reproducible technique, which provides diagnostic clarity in addition to powerful prediction of disease progression and adverse clinical events.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:743686 |
Date | January 2018 |
Creators | Pawade, Tania Ashwinikumar |
Contributors | Newby, David ; Dweck, Marc |
Publisher | University of Edinburgh |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | http://hdl.handle.net/1842/29589 |
Page generated in 0.0049 seconds