Return to search

Cardiac stem cell therapy for infarcted rat hearts

Infarction irreversibly damages the heart, with formation of an akinetic scar that may lead to heart failure. Endogenous cardiac stem cells (CSCs) are a promising candidate cell source for restoring lost tissue and thereby preventing heart failure. CSCs would be most beneficial if administered soon after infarction, thus the aim of this project was to optimize CSC culture conditions to enhance their therapeutic potential for myocardial infarction. CSCs were isolated and expanded in vitro via the formation of cardiospheres to give cardiosphere-derived cells (CDCs). Neonatal rat CDCs were found to be heterogenous, containing cells expressing the cardiac stem cell marker, c-Kit, pluripotent cell markers, Oct-4, Sox 2, Klf-4 and Nanog, and early cardiac specific differentiation markers, Nkx 2.5 and GATA 4. Administration of CDCs to the infarcted rat heart increased the cardiac ejection fraction by 9%, capillary density by 9% and reduced scar volume by 33%, compared to the non-treated group. The proliferation rates and the expression of c-Kit were significantly decreased in CSCs isolated from aged rats and after extended culture in vitro, so, CSC culture was optimized using hypoxic preconditioning. Under hypoxia, CDC proliferation rates were 1.7-fold greater, and larger cardiosphere clusters were formed. Hypoxic CDCs had an increased cardiac stem cell population, in that c-Kit was increased by 220% and CD90 and CD105 were decreased by 55% and 35%, respectively, compared to normoxic CDCs. Further, hypoxia induced the expression of CXCR-4 (~3.2-fold), EPO (~3.0-fold) and VEGF (~1.5-fold), indicating that hypoxic preconditioning may stimulate stem cell homing and neovascularization in the infarcted myocardium. Notably, hypoxic CDCs were able to switch to anaerobic glycolytic metabolism and had approximately 80% lower oxygen consumption, suggesting that they may be better adapted to survive within the hypoxic infarct scar, compared with normoxic CDCs. Culture of CDCs with hypoxia-mimicking prolyl-4-hydroxylase inhibitors (PHDIs) using DMOG, BIC and a novel compound, EDBA, induced similar effects to hypoxic culture by increasing c-Kit, EPO, VEGF, CXCR-4, decreasing CD90 and CD105 and increasing glycolytic metabolism. However, PHDI treatment for 24 hours did not alter CDC proliferation rates and cells died after 24 hours. In conclusion, CDCs are a potential cell source for therapy after myocardial infarction and their therapeutic potential can be enhanced using hypoxia or PHDI-preconditioning techniques.

Identiferoai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:547495
Date January 2011
CreatorsTan, Suat Cheng
ContributorsClarke, Kieran ; Davies, Kay E. ; Carr, Carolyn A.
PublisherUniversity of Oxford
Source SetsEthos UK
Detected LanguageEnglish
TypeElectronic Thesis or Dissertation
Sourcehttp://ora.ox.ac.uk/objects/uuid:24479cf6-74ec-47f7-a0ef-92706036edac

Page generated in 0.0019 seconds