In this work, new methods of feature extraction, feature selection, stochastic data characterization/modeling, variance reduction and measures for parametric discrimination are proposed. These methods have implications for data mining, machine learning, and information theory. A novel decision-support system is developed in order to guide intervention during cardiac arrest. The models are built upon knowledge extracted with signal-processing, non-linear dynamic and machine-learning methods. The proposed ECG characterization, combined with information extracted from PetCO2 signals, shows viability for decision-support in clinical settings. The approach, which focuses on integration of multiple features through machine learning techniques, suits well to inclusion of multiple physiologic signals. Ventricular Fibrillation (VF) is a common presenting dysrhythmia in the setting of cardiac arrest whose main treatment is defibrillation through direct current countershock to achieve return of spontaneous circulation. However, often defibrillation is unsuccessful and may even lead to the transition of VF to more nefarious rhythms such as asystole or pulseless electrical activity. Multiple methods have been proposed for predicting defibrillation success based on examination of the VF waveform. To date, however, no analytical technique has been widely accepted. For a given desired sensitivity, the proposed model provides a significantly higher accuracy and specificity as compared to the state-of-the-art. Notably, within the range of 80-90% of sensitivity, the method provides about 40% higher specificity. This means that when trained to have the same level of sensitivity, the model will yield far fewer false positives (unnecessary shocks). Also introduced is a new model that predicts recurrence of arrest after a successful countershock is delivered. To date, no other work has sought to build such a model. I validate the method by reporting multiple performance metrics calculated on (blind) test sets.
Identifer | oai:union.ndltd.org:vcu.edu/oai:scholarscompass.vcu.edu:etd-4197 |
Date | 02 July 2013 |
Creators | Shandilya, Sharad |
Publisher | VCU Scholars Compass |
Source Sets | Virginia Commonwealth University |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Theses and Dissertations |
Rights | © The Author |
Page generated in 0.0026 seconds