The complementary prism GG of a graph G is formed from the disjoint union of G and its complement G by adding the edges of a perfect match- ing between the corresponding vertices of G and G. A Roman dominating function on a graph G = (V,E) is a labeling f : V(G) → {0,1,2} such that every vertex with label 0 is adjacent to a vertex with label 2. The Roman domination number γR(G) of G is the minimum f(V ) = Σv∈V f(v) over all such functions of G. We study the Roman domination number of complementary prisms. Our main results show that γR(GG) takes on a limited number of values in terms of the domination number of GG and the Roman domination numbers of G and G.
Identifer | oai:union.ndltd.org:ETSU/oai:dc.etsu.edu:etd-4590 |
Date | 01 May 2017 |
Creators | Alhashim, Alawi I |
Publisher | Digital Commons @ East Tennessee State University |
Source Sets | East Tennessee State University |
Language | English |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | Electronic Theses and Dissertations |
Rights | Copyright by the authors. |
Page generated in 0.0018 seconds