Return to search

Effects of manufacturing chain on mechanical performance : Study on heat treatment of powertrain components

The increasing demands for lightweight designs with high strength call for improved manufacturing processes regarding heat treatment of steel. The manufacturing process has considerable potential to improve the mechanical performance and to obtain more reliable results with less variation. The goal of this thesis is to establish new knowledge regarding improved manufacturing processes in industrial heat treatment applications. Three research questions with associated hypotheses are formulated. Process experiments, evaluation of the mechanical performance, and modelling of the fatigue behaviour assist in answering the questions. The gas quenching procedure following low-pressure carburising differs from the conventional procedure of gas carburising and oil quenching. It is shown that the introduction of a holding time during the low-temperature part of the quench has a positive effect on mechanical properties, with some 20 percent increase in fatigue strength. This is attributed to increased compressive surface residual stress and stabilisation of austenite. Tempering is a common manufacturing process step following hardening in order to increase the toughness of the steel. However, the research shows that the higher hardness from eliminating tempering from the manufacturing process is beneficial for contact fatigue resistance. The untempered steel showed not only less contact fatigue damage but also a different contact fatigue mechanism. Straightening of elongated components is made after heat treatment in order to compensate for distortions. The research shows that straightening of induction hardened shafts may lead to lowering of the fatigue strength of up to 20 percent. A fracture mechanics based model is developed to estimate the effects of straightening on fatigue strength. / Ökande krav på höghållfasta lättviktskonstruktioner kräver förbättrade tillverkningsprocesser för värmebehandling av stål. Det finns stor potential att förbättra mekanisk prestanda och att erhålla mer tillförlitliga resultat med mindre variation genom att förbättra tillverkningsprocessen. Målet med denna avhandling är att etablera ny kunskap kring tillverkningsprocesser inom industriella värmebehandlingsapplikationer. Tre forskningsfrågor med tillhörande hypoteser formuleras. Processexperiment, utvärdering av mekanisk hållfasthet och modellering av utmattningsbeteende bygger upp besvarandet av frågorna. Gaskylning som följer lågtrycksuppkolning skiljer sig från det konventionella förfarandet med gasuppkolning och släckning i olja. Resultaten visar att en hålltid i den nedre delen av kylningsförloppet har positiv inverkan på utmattningshållfastheten. Orsaken till förbättringen hänförs till ökade tryckrestspänningar samt stabilisering av austenit. Anlöpning är en vanlig tillverkningsprocess som efterföljer härdning för att öka stålets seghet. Forskningen visar däremot att den högre hårdheten för oanlöpt stål är fördelaktig för motstånd mot kontaktutmattning. Oanlöpt stål visade mindre mängd kontaktutmattningsskador och även en annan skademekanism. Riktning av långa komponenter görs efter värmebehandling för att kompensera för de formförändringar som uppstår. Forskningen visar att riktning av induktionshärdade axlar kan leda till sänkning av utmattningshållfastheten med upp till 20 procent. En brottmekanisk modell som uppskattar effekten av riktning på utmattningshållfasthet presenteras. / <p>QC 20150410</p>

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-163665
Date January 2015
CreatorsFahlkrans, Johan
PublisherKTH, Industriell produktion, KTH, XPRES, Excellence in production research, Scania CV, Stockholm, Sweden, Stockholm
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeLicentiate thesis, comprehensive summary, info:eu-repo/semantics/masterThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-IIP, 1650-1888 ; 15-01

Page generated in 0.0025 seconds