The burgeoning field of nanotechnology motivates comprehensive elucidation of nanoscale materials. This thesis addresses transmission electron microscope characterisation of nanoparticle morphology, concerning specifically the crystal- lographic status of novel intermetallic GaPd2 nanocatalysts and advancement of electron tomographic methods for high-fidelity three-dimensional analysis. Going beyond preceding analyses, high-resolution annular dark-field imaging is used to verify successful nano-sizing of the intermetallic compound GaPd2. It also reveals catalytically significant and crystallographically intriguing deviations from the bulk crystal structure. So-called ‘non-crystallographic’ five-fold twinned nanoparticles are observed, adding a new perspective in the long standing debate over how such morphologies may be achieved. The morphological complexity of the GaPd2 nanocatalysts, and many cognate nanoparticle systems, demands fully three-dimensional analysis. It is illustrated how image processing techniques applied to electron tomography reconstructions can facilitate more facile and objective quantitative analysis (‘nano-metrology’). However, the fidelity of the analysis is limited ultimately by artefacts in the tomographic reconstruction. Compressed sensing, a new sampling theory, asserts that many signals can be recovered from far fewer measurements than traditional theories dictate are necessary. Compressed sensing is applied here to electron tomographic reconstruction, and is shown to yield far higher fidelity reconstructions than conventional algorithms. Reconstruction from extremely limited data, more robust quantitative analysis and novel three-dimensional imaging are demon- strated, including the first three-dimensional imaging of localised surface plasmon resonances. Many aspects of transmission electron microscopy characterisation may be enhanced using a compressed sensing approach.
Identifer | oai:union.ndltd.org:bl.uk/oai:ethos.bl.uk:637104 |
Date | January 2015 |
Creators | Leary, Rowan Kendall |
Publisher | University of Cambridge |
Source Sets | Ethos UK |
Detected Language | English |
Type | Electronic Thesis or Dissertation |
Source | https://www.repository.cam.ac.uk/handle/1810/246903 |
Page generated in 0.0019 seconds