Return to search

The Study of Catalytic Oxidation of Nitrogen Monoxide

The study of catalytic oxidation on the removal of NO was investigated over the Cu-catalysts . The Cu-catalysts , including Cu/TiO2 , Cu/Al2O3 and Cu/SiO2 , were prepared by impregnation method . Alougth NO2 , the product of this reaction , has higher toxicity than NO , but it might be removed completely by absorption with H2O or alkalinal solution for its high solubility .
The experiments can be divided into three parts , i.e. , the screen of test catalysts , the effect of operating factors on the conversion of NO and the kinetic model . In the first part , the activity of test catalysts , which were prepared by mixing three various sources of Cu-ions¡]i.e., Cu(NO3)2 , Cu(CH3COO)2 , and CuSO4¡^with three different types of support¡]i.e., TiO2 , Al2O3 , and SiO2¡^, and were compared in form of conversion on NO to find the best catalyst . The results show that the mixture Cu(NO3)2 / TiO2 has the good performance on the conversion of NO , and also has more wider operating in range of temperature . In order to find the optimal loading of Cu on Cu(NO3)2 / TiO2 , additional test of various dosage over the catalysts was conduct in series . It is found that 8wt.% of Cu loading on Cu(NO3)2 / TiO2 is the most economic dosage . Therefore , we select this type of Cu oxide as the best catalyst in the following work .
In the second part , the effect of NO inlet concentration , space velocity and humidity on the conversion of NO were performed . The results show that the conversion of NO decreases with the increasing of [NO]in when [NO]in is larger than 1000ppm¡Fthe conversion of NO is not changed with [NO]in when [NO]in is lower than 1000ppm . The better space velocity is 15000hr-1 , i.e.,the empty bed residence time is 0.24 second . The reaction on NO conversion would be restrained by higher humidity contenting in inlet gas stream , but the effect of inhibition on NO conversion is not significant .
Finally , the kinetics of the oxidation of NO over 8wt.% Cu(NO3)2 / TiO2 was obtained by integral method .It is found that the oxidations of NO can be described by first order reversible reaction and the observed activation energy are 15.8 kcal/mole¡]forward reaction¡^and 25.9 kcal/mole¡]backward reaction¡^, respectively . By comparing the conversion of predicted NO with the experimentals , we can find the suitable operation conditions in application of the kinetic model : the inlet concentration of NO in a range of 300-1000ppm , the empty-bed residence time ranging from 0.12-0.48 second , and the absolute humidity ranging from 4854 to 42475ppm .

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0731100-143712
Date31 July 2000
CreatorsWang, Ching-Chie
Contributorsnone, none, none, none
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageCholon
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0731100-143712
Rightsoff_campus_withheld, Copyright information available at source archive

Page generated in 0.0021 seconds