Return to search

Geometric Methods for Mining Large and Possibly Private Datasets

With the wide deployment of data intensive Internet applications and continued advances in sensing technology and biotechnology, large multidimensional datasets, possibly containing privacy-conscious information have been emerging. Mining such datasets has become increasingly common in business integration, large-scale scientific data analysis, and national security. The proposed research aims at exploring the geometric properties of the multidimensional datasets utilized in statistical learning and data mining, and providing novel techniques and frameworks for mining very large datasets while protecting the desired data privacy.

The first main contribution of this research is the development of iVIBRATE interactive visualization-based approach for clustering very large datasets. The iVIBRATE framework uniquely addresses the challenges in handling irregularly shaped clusters, domain-specific cluster definition, and cluster-labeling of the data on disk. It consists of the VISTA visual cluster rendering subsystem, and the Adaptive ClusterMap Labeling subsystem.

The second main contribution is the development of ``Best K Plot'(BKPlot) method for determining the critical clustering structures in multidimensional categorical data. The BKPlot method uniquely addresses two challenges in clustering categorical data: How to determine the number of clusters (the best K) and how to identify the existence of significant clustering structures. The method consists of the basic theory, the sample BKPlot theory for large datasets, and the testing method for identifying no-cluster datasets.

The third main contribution of this research is the development of the theory of geometric data perturbation and its application in privacy-preserving data classification involving single party or multiparty collaboration. The key of geometric data perturbation is to find a good randomly generated rotation matrix and an appropriate noise component that provides satisfactory balance between privacy guarantee and data quality, considering possible inference attacks. When geometric perturbation is applied to collaborative multiparty data classification, it is challenging to unify the different geometric perturbations used by different parties. We study three protocols under the data-mining-service oriented framework for unifying the perturbations: 1) the threshold-satisfied voting protocol, 2) the space adaptation protocol, and 3) the space adaptation protocol with a trusted party. The tradeoffs between the privacy guarantee, the model accuracy and the cost are studied for the protocols.

Identiferoai:union.ndltd.org:GATECH/oai:smartech.gatech.edu:1853/11561
Date07 July 2006
CreatorsChen, Keke
PublisherGeorgia Institute of Technology
Source SetsGeorgia Tech Electronic Thesis and Dissertation Archive
Languageen_US
Detected LanguageEnglish
TypeDissertation
Format2417820 bytes, application/pdf

Page generated in 0.0017 seconds