Return to search

Análise de dados categorizados com omissão / Analysis of categorical data with missingness

Neste trabalho aborda-se aspectos teóricos, computacionais e aplicados de análises clássicas de dados categorizados com omissão. Uma revisão da literatura é apresentada enquanto se introduz os mecanismos de omissão, mostrando suas características e implicações nas inferências de interesse por meio de um exemplo considerando duas variáveis respostas dicotômicas e estudos de simulação. Amplia-se a modelagem descrita em Paulino (1991, Brazilian Journal of Probability and Statistics 5, 1-42) da distribuição multinomial para a produto de multinomiais para possibilitar a inclusão de variáveis explicativas na análise. Os resultados são desenvolvidos em formulação matricial adequada para a implementação computacional, que é realizada com a construção de uma biblioteca para o ambiente estatístico R, a qual é disponibilizada para facilitar o traçado das inferências descritas nesta dissertação. A aplicação da teoria é ilustrada por meio de cinco exemplos de características diversas, uma vez que se ajusta modelos estruturais lineares (homogeneidade marginal), log-lineares (independência, razão de chances adjacentes comum) e funcionais lineares (kappa, kappa ponderado, sensibilidade/especificidade, valor preditivo positivo/negativo) para as probabilidades de categorização. Os padrões de omissão também são variados, com omissões em uma ou duas variáveis, confundimento de células vizinhas, sem ou com subpopulações. / We consider theoretical, computational and applied aspects of classical categorical data analyses with missingness. We present a literature review while introducing the missingness mechanisms, highlighting their characteristics and implications in the inferences of interest by means of an example involving two binary responses and simulation studies. We extend the multinomial modeling scenario described in Paulino (1991, Brazilian Journal of Probability and Statistics 5, 1-42) to the product-multinomial setup to allow for the inclusion of explanatory variables. We develop the results in matrix formulation and implement the computational procedures via subroutines written under R statistical environment. We illustrate the application of the theory by means of five examples with different characteristics, fitting structural linear (marginal homogeneity), log-linear (independence, constant adjacent odds ratio) and functional linear models (kappa, weighted kappa, sensitivity/specificity, positive/negative predictive value) for the marginal probabilities. The missingness patterns includes missingness in one or two variables, neighbor cells confounded, with or without explanatory variables.

Identiferoai:union.ndltd.org:usp.br/oai:teses.usp.br:tde-04122007-192457
Date30 August 2006
CreatorsPoleto, Frederico Zanqueta
ContributorsSinger, Julio da Motta
PublisherBiblioteca Digitais de Teses e Dissertações da USP
Source SetsUniversidade de São Paulo
LanguagePortuguese
Detected LanguagePortuguese
TypeDissertação de Mestrado
Formatapplication/pdf
RightsLiberar o conteúdo para acesso público.

Page generated in 0.0021 seconds