Return to search

Extensions Of S-spaces

Given a convergence space X, a continuous action of a convergence semigroup S on X and a compactification Y of X, under what conditions on X and the action on X is it possible to extend the action to a continuous action on Y . Similarly, given a Cauchy space X, a Cauchy continuous action of a Cauchy semigroup S on X and a completion Y of X, under what conditions on X and the action on X is it possible to extend the action to a Cauchy continuous action on Y . We answer the first question for some particular compactifications like the one-point compactification and the star compactification as well as for the class of regular compactifications. We answer the second question for the class of regular strict completions. Using these results, we give sufficient conditions under which the pseudoquotient of a compactification/completion of a space is the compactification/completion of the pseudoquotient of the given space

Identiferoai:union.ndltd.org:ucf.edu/oai:stars.library.ucf.edu:etd-3653
Date01 January 2013
CreatorsLosert, Bernd
PublisherSTARS
Source SetsUniversity of Central Florida
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceElectronic Theses and Dissertations

Page generated in 0.0013 seconds