Return to search

Fluid/Material Coupled Numerical Analysis of Single Bubble Collapse Near a Pit on a Wall / Vätska/Material Kopplad Numerisk Analys av en Bubbla Kollaps Nära en Grop på en Vägg

In order to elucidate the progression mechanism of cavitation erosion, the behaviors of a single cavitation bubble collapse near a pit on a wall and both the resulting pressure wave in fluid and stress wave in material are investigated in detail. To find out the mechanism of cavitation erosion, many experimental studies on the bubble collapse behavior near a flat rigid wall and the resulting material damage have been conducted so far. A lot of numerical studies using only fluid analysis have been also carried out. In recent years, a few studies on the bubble collapse near a more complex geometry were made and it is reported that more complex geometry has an effect on the bubble collapse behavior, jet formation and subsequent wave dynamics. It is, however, very challenging to introduce a material analysis and investigate detailed stress wave propagation in the material and its effect on the material damage i.e. cavitation erosion. This study tackles this problem using an in-house fluid/material two-way coupled numerical analysis method which considers reflection and transmission of plane waves with acoustic impedance at the fluid/material boundary. In the fluid domain, the locally homogeneous model of compressible gas-liquid two-phase medium is used for capturing the gas-liquid interface. The compressibility of two-phase flow is also considered in this model so that the propagation of pressure wave can be also be taken into account. The governing equations are the 3D compressible gas-liquid two-phase Navier-Stokes equations. In the material domain, the governing equations are composed of the motion equations and the time-differential constitutive equations assuming that the material is a homogeneous isotropic elastic medium, which can simulate the stress wave propagation in the material. Results show that the stress waves are concentrated at the bottom of the pit regardless of the initial bubble position. It is also found that the surface pressure in the fluid side does not necessarily correlate with the stresses in the material, suggesting the importance of material analysis. Moreover, under high pressure conditions, a rapid bubble collapse causes a gas phase generation at the bottom of the pit and its gas phase is contracted and collapsed by the pressure wave, which leads to pressure and stress peaks at the bottom of the pit. Furthermore, through the study of the effect of initial bubble position on its collapse behavior, it is confirmed that, when the initial bubble position is shifted horizontally, bubble collapses asymmetrically and the pressure waves tend to be directed away from a pit. This research numerically reveals that a single bubble collapse near a pit on a wall results in high strain energy concentration at the bottom of the pit, which gives rise to deeper erosion progression at the bottom of the pit. / För att klargöra framstegsmekanismen för kavitationserosion kollapsar beteendet hos en enda kavitationsbubbla nära en grop på en vägg och både den resulterande tryckvågen i vätska och stressvåg i material undersöks i detalj. För att ta reda på mekanismen för kavitationserosion har många experimentella studier av bubblans kollapsbeteende nära en platt styv vägg och den resulterande materialskada genomförts hittills. Många numeriska studier med endast vätskeanalys har också genomförts. Under de senaste åren gjordes några studier om bubblans kollaps nära en mer komplex geometri och det rapporteras att mer komplex geometri har en effekt på bubblans kollapsbeteende, strålbildning och efterföljande vågdynamik. Det är dock mycket utmanande att införa en materialanalys och undersöka detaljerad spänningsvågförökning i materialet och dess inverkan på materialskadorna, dvs. kavitationserosion. Denna studie hanterar detta problem med hjälp av en inbyggd tvåvägs kopplad numerisk analysmetod som tar hänsyn till reflektion och överföring av plana vågor med akustisk impedans vid vätska / materialgränsen. I fluiddomänen används den lokalt homogena modellen av tvåfasmedium för komprimerbar gas-vätska för att fånga gas-vätskegränssnittet. Komprimerbarheten av tvåfasflöde beaktas också i denna modell så att utbredningen av tryckvågen också kan beaktas. De styrande ekvationerna är de 3D-komprimerbara tvåfasiga gasvätska Navier-Stokes-ekvationerna. I materialdomänen är de styrande ekvationerna sammansatta av rörelseekvationer och tidsdifferentialkonstitutiva ekvationer förutsatt att materialet är ett homogent isotropiskt elastiskt medium, vilket kan simulera spänningsvågutbredningen i materialet. Resultaten visar att stressvågorna är koncentrerade längst ner i gropen oavsett den ursprungliga bubbelpositionen. Man har också funnit att yttrycket i vätskesidan inte nödvändigtvis korrelerar med spänningarna i materialet, vilket tyder på vikten av materialanalys. Vidare orsakar en snabb bubbelskollaps under högtrycksförhållanden en gasfasgenerering vid botten av gropen och dess gasfas dras samman och kollapsas av tryckvågen, vilket leder till tryck och spänningstoppar vid botten av gropen. Vidare bekräftas det genom studien av effekten av den ursprungliga bubbelpositionen på dess kollapsbeteende att när den ursprungliga bubbelpositionen förskjuts horisontellt kollapsar bubblan asymmetriskt och tryckvågorna tenderar att riktas bort från en grop. Denna undersökning avslöjar numeriskt att en enda bubbla kollapsar nära en grop på en vägg resulterar i hög spänningsenergikoncentration längst ner i gropen, vilket ger upphov till djupare erosionsprogression längst ner i gropen.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-309090
Date January 2020
CreatorsMakii, Daiki
PublisherKTH, Strömningsmekanik och Teknisk Akustik
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-SCI-GRU ; 2020:398

Page generated in 0.0076 seconds