Return to search

Real Simple Lie Algebras: Cartan Subalgebras, Cayley Transforms, and Classification

The differential geometry software package in Maple has the necessary tools and commands to automate the classification process for complex simple Lie algebras. The purpose of this thesis is to write the programs to complete the classification for real simple Lie algebras. This classification is difficult because the Cartan subalgebras are not all conjugate as they are in the complex case. For the process of the real classification, one must first identify a maximally noncompact Cartan subalgebra. The process of the Cayley transform is used to find this specific Cartan subalgebra. This Cartan subalgebra is used to find the simple roots for the given real simple Lie algebra. With this information, we can then create a Satake diagram. Then we match our given algebra's Satake diagram to a Satake diagram of a known algebra. The programs explained in this thesis complete this process of classification.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-7986
Date01 December 2017
CreatorsLewis, Hannah M.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact digitalcommons@usu.edu.

Page generated in 0.0017 seconds