Return to search

Genetic Analysis of Development and Behavior in Hypoxia and Cellular Characterization of Anoxia Induced Meiotic Prophase Arrest in Caenorhabditis Elegans

It was hypothesized that chronic hypoxia will affect various biological processes including developmental trajectory and behavior. To test this hypothesis, embryos were raised to adulthood in severe hypoxic environments (0.5% O2 or 1% O2, 22°C) and analyzed for survival rate, developmental progression, and altered behaviors. Wildtype hermaphrodites survive chronic hypoxia yet developmental trajectory is slowed. The hermaphrodites raised in chronic hypoxia had different phenotypes in comparison to the normoxic controls. First, hermaphrodites exposed to chronic hypoxia produced a significantly lower number of embryos and had a slight increase in male progeny. This suggests that chronic hypoxia exposure during development affects the germline. Second, animals raised in chronic hypoxia from embryos to young adults have a slight increase in lifespan when re-exposed to a normoxic environment, indicating that chronic hypoxia does not negatively decrease lifespan. Finally, hermaphrodites that were raised in hypoxia will lay the majority of their eggs on the area of the agar plate where the bacterial lawn is not present. This is in contrast to animals in normoxia, which lay the majority of their eggs on the bacterial lawn. One hypothesis for this hypoxia-induced egg-laying behavior is that the animal can sense microenvironments in hypoxia. To examine if various pathways are involved with chronic-hypoxia responses RNAi and assayed genetic mutants were used. Specifically, genetic mutations affecting oxygen sensing (egl-9), aerotaxis (npr-1), TFG-ß signaling (dbl-1, daf-7) and predicted oxygen-binding proteins (globin-like genes) were phenotypically analyzed. Results indicate that mutations in several of these genes (npr-1, dbl-1) resulted in a decrease in hypoxia survival rate. A mutation in egl-9 also had a detrimental affect on the viability of an animal raised in chronic hypoxia. However, a similar phenotype was not observed in the vhl-1 mutation indicating that the phenotype may not be due to a mere increase in HIF-1 levels, per se. A mutation in the globin-like gene (glb-13(tm2825)) suppressed the hypoxia-induced egg-laying phenotype. That is, the glb-13(tm2825) animal raised in chronic hypoxia laid eggs on the bacterial lawn at a significantly higher rate in comparison to wildtype controls, thus suggesting that globin-like molecules may be involved with the sensing of microenvironments. Together, this research lays the foundation for understanding the implications of chronic hypoxia in developing organisms.

Identiferoai:union.ndltd.org:unt.edu/info:ark/67531/metadc84241
Date08 1900
CreatorsLittle, Brent Ashley
ContributorsPadilla, Pamela A., Burggren, Warren W., Dzialowskir, Edward, Root, Douglas D., Avery, Leon
PublisherUniversity of North Texas
Source SetsUniversity of North Texas
LanguageEnglish
Detected LanguageEnglish
TypeThesis or Dissertation
FormatText
RightsPublic, Little, Brent Ashley, Copyright, Copyright is held by the author, unless otherwise noted. All rights reserved.

Page generated in 0.002 seconds