This thesis explores the energy-delay space of eight widely referred flip-flops in a 0.13µm CMOS technology. The main goal has been to find the smallest set of flip-flop topologies to be included in a “high performance” flip-flop cell library covering a wide range of power-performance targets. Based on the comparison results, transmission gate-based flip-flops show the best powerperformance trade-offs with a total delay (clock-to-output + setup time) down to 105ps. For higher performance, the pulse-triggered flip-flops are the fastest (80ps) alternatives suitable to be included in a flip-flop cell library. However, pulse-triggered flip-flops consume significantly larger power (about 2.5x) compared to other fast but fully dynamic flip-flops such as TSPC and dynamic TG-based flip-flops.
Identifer | oai:union.ndltd.org:UPSALLA1/oai:DiVA.org:liu-2077 |
Date | January 2004 |
Creators | Oskuii, Saeeid Tahmasbi |
Publisher | Linköpings universitet, Institutionen för systemteknik, Institutionen för systemteknik |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Student thesis, info:eu-repo/semantics/bachelorThesis, text |
Format | application/pdf |
Rights | info:eu-repo/semantics/openAccess |
Relation | LiTH-ISY-Ex, ; 3432 |
Page generated in 0.0025 seconds