Return to search

Lithium-ion battery modeling and SoC estimation

The energy crisis and environmental pollution have become increasingly prominent in recent years. Lithium batteries have attracted extensive attention due to their high energy density, safety, and low pollution. To further study how the battery works, it is necessary to establish an accurate model conforming to the battery characteristics. As the core function of a battery management system(BMS), accurate state of charge(SoC) estimation dramatically improves battery life and performance. This thesis selects a ternary lithium battery in the centre for advanced life cycle engineering(CALCE) dataset for a study of cell modeling and SoC estimation. The second-order Thevenin equivalent circuit model is selected as the cell model due to a trade-off between model complexity and accuracy. The parameters to identify include OCV, internal ohmic resistance, polarized internal resistance and capacitance. They were obtained with the MATLAB toolbox at various SoC state points under different temperatures. The ‘terminal voltage comparison’ method is utilized to verify the identification's accuracy. The simulation results turn out to be satisfactory. Then cell SoC can be estimated after cell modeling. First, the principles of the Coulomb counting method, OCV method and EKF method are analyzed. The state space equations required in SoC estimation are determined by discretizing the non-linear equivalent circuit model. The simulation results are compared with the experimental results in the HPPC discharge experiment. Furthermore, the robustness of the EKF algorithm is further investigated. The results prove that the EKF algorithm has high precision, fast convergence speed and strong anti-interference capability. Last but not least, the research on battery pack SoC estimation was continued. How to expand a single cell into a battery pack is analyzed, including aggregating cells into a pack and scaling a cell model to a pack. In addition, battery pack SoC is individually estimated by the 'Big cell' method and 'Short board effect' method. The result is not so good, indicating that further work can be done to improve the SoC estimation accuracy. / Energikrisen och miljöföroreningarna har blivit allt mer framträdande de senaste åren. Litiumbatteri har väckt stor uppmärksamhet på grund av sin höga energitäthet, säkerhet och låga föroreningar. För att ytterligare studera hur batteriet fungerar är det nödvändigt att etablera en exakt modell som överensstämmer med batteriets egenskaper. Som kärnfunktionen hos BMS förbättrar noggrann SoC-uppskattning dramatiskt batteriets livslängd och prestanda. Denna avhandling väljer ett ternärt litiumbatteri i CALCE-datauppsättningen för forskning. Dessutom slutförs cellmodellering och SoC-uppskattning baserat på det. Den andra ordningens Thevenins ekvivalenta kretsmodell väljs som cellmodell på grund av en avvägning mellan modellens komplexitet och noggrannhet. Parametrarna som måste identifieras inkluderar OCV, intern ohmsk resistans, polariserad intern resistans och kapacitans. De erhölls med MATLAB-verktygslådan vid olika SoC-tillståndspunkter under olika temperaturer. Metoden "terminalspänningsjämförelse" används för att verifiera identifieringens noggrannhet. Simuleringsresultaten visar sig vara tillfredsställande. Sedan kan cell SoC uppskattas efter cellmodellering. Först analyseras principerna för Coulomb-räknemetoden, OCV-metoden och EKF-metoden. Tillståndsrymdsekvationerna som krävs vid SoC-uppskattning bestäms genom att diskretisera den icke-linjära ekvivalenta kretsmodellen. Simuleringsresultaten jämförs med de experimentella resultaten i HPPC-utsläppsexperimentet. Dessutom, robustheten hos EKF-algoritmen undersöks ytterligare. Resultaten bevisar att EKF-algoritmen har hög precision, snabb konvergenshastighet och stark anti-interferensförmåga. Sist men inte minst fortsatte forskningen kring SoC-uppskattning av batteripaket. Hur man expanderar ett enskilt batteri till ett batteripaket analyseras, inklusive aggregering av celler till ett paket och skalning av en cellmodell till ett paket. Dessutom uppskattas batteripaketets SoC individuellt med "Big cell"-metoden och "Short board effect"-metoden. Resultatet är inte så bra, vilket indikerar att ytterligare arbete kan göras för att förbättra SoC-uppskattningens noggrannhet.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:kth-337682
Date January 2023
CreatorsXu, Ruoyu
PublisherKTH, Skolan för elektroteknik och datavetenskap (EECS)
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageSwedish
TypeStudent thesis, info:eu-repo/semantics/bachelorThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationTRITA-EECS-EX ; 2023:679

Page generated in 0.002 seconds