Cell polarity is a key concept in plant biology. The subcellular localization of Pin- formed (PIN) auxin efflux carriers in the root of "#$%&'()*&* is remarkably asymmetrical, making PINs prominent markers to study cell polarity. In spite of its developmental importance and two decades of research, the molecular basis of PIN polarity remains largely unknown. In this thesis, I employed advanced transgenic and fluorescence microscopy approaches to gain insight into several aspects of PIN polarity regulation. I participated in establishing a novel genetically encoded inhibitor of endocytosis, an invaluable tool for the study of the importance of endocytosis for various cellular processes, including PIN polarity. I demonstrated that apical polarity of PIN2 needs to be re-established after cell division and that this process depends on endocytosis, '+!,(-( protein secretion and the action of WAG1 and related protein kinases, but not transcytosis, cell-cell signaling or intact cytoskeleton. Finally, I identified the previously unknown role of MAB4/MEL proteins in PIN polarity, which lies in the ability of MAB4/MELs to reduce PIN lateral diffusion and thus contribute to PIN polarity maintenance. My results, besides broadening current understanding of PIN polarity regulation, identify mechanisms that...
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:393001 |
Date | January 2019 |
Creators | Glanc, Matouš |
Contributors | Friml, Jiří, Grebe, Markus, Luschnig, Christian |
Source Sets | Czech ETDs |
Language | English |
Detected Language | English |
Type | info:eu-repo/semantics/doctoralThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0106 seconds