Return to search

Effect of combined treatment of tumor necrosis factor-alpha and hyperthermia on human and murine tumor cells.

by Lam Kai Yi. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1998. / Includes bibliographical references (leaves 156-165). / Abstract also in Chinese. / Chapter Chapter One: --- Introduction --- p.1 / Chapter 1.1 --- Tumor Necrosis Factor-α in Cancer Treatment --- p.1 / Chapter 1.1.1 --- Historical Background --- p.1 / Chapter 1.1.2 --- Mechanisms of Action --- p.2 / Chapter 1.1.2.1 --- Production of Reactive oxidative Species / Chapter 1.1.2.2 --- Increase of Intracellular Free Calcium Concentration / Chapter 1.1.2.3 --- Activation of Ca2+/Mg2+-dependent Endonuclease / Chapter 1.1.2.4 --- Decrease of glucose uptake and Protein Synthesis / Chapter 1.1.2.5 --- Formation of Ion-permeable Channel / Chapter 1.1.2.6 --- Activation of Phospholipase / Chapter 1.1.2.7 --- Increase of S-phase Cells / Chapter 1.1.2.8 --- Immunomodulatory Effects / Chapter 1.1.3 --- Resistance of Cells to TNF-α --- p.7 / Chapter 1.1.4 --- Clinical Studies --- p.11 / Chapter 1.1.5 --- Side Effects --- p.12 / Chapter 1.2 --- Hyperthermia and Cancer Treatment --- p.14 / Chapter 1.2.1 --- Hyperthermic Agents --- p.15 / Chapter 1.2.2 --- Intrinsic Heat Sensitivity --- p.15 / Chapter 1.2.3 --- Mechanisms of Action --- p.17 / Chapter 1.2.3.1 --- Depolarization of Membrane Potential / Chapter 1.2.3.2 --- "Reduction of glucose transport and DNA, mRNA and Protein Synthesis" / Chapter 1.2.3.3 --- Decrease of Intracellular pH / Chapter 1.2.3.4 --- Calcium Imbalance / Chapter 1.2.3.5 --- Effect on Nucleolar Protein / Chapter 1.2.3.6 --- Apoptosis / Chapter 1.2.3.7 --- Induction of Autologous Tumor Killing / Chapter 1.2.3.8 --- "Blood Flow, Tumor Oxygenation and Vascular Damage" / Chapter 1.2.4 --- Clinical Studies --- p.20 / Chapter 1.3 --- Combined Treatment --- p.21 / Chapter 1.3.1 --- Combined Treatment with TNF-α and Fixed-temperature Hyperthermia --- p.22 / Chapter 1.3.2 --- Combined Treatment with TNF + Step-down Hyperthermia --- p.22 / Chapter 1.3.3 --- In Vivo Study --- p.23 / Chapter 1.3.4 --- Sequence of Treatment --- p.24 / Chapter 1.3.5 --- Proposed Mechanism of Synergism --- p.24 / Chapter 1.4 --- Objective of Study --- p.26 / Chapter 1.4.1 --- Sequence of Treatments --- p.26 / Chapter 1.4.2 --- Comparison of Treatments' Effectiveness --- p.27 / Chapter 1.4.3 --- Effect on Normal Cell --- p.27 / Chapter 1.4.4 --- Effect on Distribution of Cells in Cell Cycle Phases --- p.28 / Chapter 1.4.5 --- In Vivo Study --- p.28 / Chapter Chapter Two: --- Materials and Methods --- p.30 / Chapter 2.1. --- Materials --- p.30 / Chapter 2.1.1 --- For Cell Culture --- p.30 / Chapter 2.1.2 --- In vitro Treatments --- p.31 / Chapter 2.1.3 --- DNA Electrophoresis --- p.31 / Chapter 2.1.4 --- Flow Cytometry --- p.32 / Chapter 2.2. --- Reagent Preparation --- p.33 / Chapter 2.2.1 --- Culture Media --- p.33 / Chapter 2.2.2 --- Human Recombinant Tumor Necrosis Factor alpha (rhTNF-α) --- p.33 / Chapter 2.2.3 --- Phosphate Buffered Saline (PBS) --- p.33 / Chapter 2.2.4 --- Lysis Buffer --- p.34 / Chapter 2.2.5 --- TE Buffer --- p.34 / Chapter 2.2.6 --- Proteinase K and Ribonuclease A (RNase A) --- p.34 / Chapter 2.2.7 --- 100 Base-Pair DNA Marker --- p.34 / Chapter 2.2.8 --- Propidium Iodide (PI) --- p.35 / Chapter 2.3 --- Methods --- p.35 / Chapter 2.3.1 --- Cell Culture --- p.35 / Chapter 2.3.1.1 --- Ehrlich Ascitic Tumor (EAT) and Human Leukemia (HL-60) / Chapter 2.3.1.2 --- Human Coronary Artery Endothelial Cells (HCAEC) / Chapter 2.3.2 --- In vitro Experiments --- p.36 / Chapter 2.3.3 --- Tumor Necrosis Factor Treatment --- p.37 / Chapter 2.3.4 --- Hyperthermia Treatments --- p.37 / Chapter 2.3.5 --- Cell Counting --- p.38 / Chapter 2.3.5.1 --- Trypan Blue Exclusion Assay / Chapter 2.3.5.2 --- Neutral Red Assay / Chapter 2.3.6 --- Determination of Additive or Synergistic Effect --- p.39 / Chapter 2.3.7 --- DNA Electrophoresis --- p.40 / Chapter 2.3.8 --- Flow Cytometry --- p.42 / Chapter 2.3.7.1 --- Preparation of Samples / Chapter 2.3.7.2 --- Flow Cytometry Acquisition / Chapter 2.3.7.3 --- Analysis / Chapter 2.3.9 --- In vivo Experiments --- p.44 / Chapter 2.3.8.1 --- Animal Strain / Chapter 2.3.8.2 --- Cell Line / Chapter 2.3.8.3 --- Tumor Necrosis Factor Treatment / Chapter 2.3.8.4 --- Hyperthermia Treatments / Chapter 2.3.8.5 --- Test of Body Temperature / Chapter 2.3.8.6 --- Cell Harvesting / Chapter Chapter Three: --- Result --- p.50 / Chapter 3.1 --- Optimal Sequence of Treatments --- p.50 / Chapter 3.1.1 --- Optimal Sequence of Treatments on Murine Ehrlich Ascitic Tumor (EAT) cells --- p.50 / Chapter 3.1.1.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.1.1.2 --- TNF + Step-down Hyperthermia2 / Chapter 3.1.1.3 --- TNF + Step-down Hyperthermia3 / Chapter 3.1.2 --- Optimal Sequence of Treatments on Human Leukemia cells HL-60 --- p.60 / Chapter 3.1.2.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.1.2.2 --- TNF + Step-Down Hyperthermia2 / Chapter 3.1.2.3 --- TNF + Step-Down Hyperthermia3 / Chapter 3.2 --- Comparison of Effectiveness of Treatments --- p.72 / Chapter 3.2.1 --- Effectiveness of Various treatments on EAT cells --- p.72 / Chapter 3.2.2 --- Synergistic Effect between rhTNF-α and Hyperthermia on EAT cells --- p.74 / Chapter 3.2.3 --- Decrease of Relative Growth and Viability of EAT with Time --- p.79 / Chapter 3.2.3.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.2.3.2 --- TNF + Step-down Hyperthermia2 / Chapter 3.2.3.3 --- TNF + Step-down Hyperthermia3 / Chapter 3.2.4 --- Comparison of Effectiveness of Various Treatments on HL-60 cells --- p.82 / Chapter 3.2.5 --- Synergistic Effect between rhTNF-α and Hyperthermia on HL-60 cells --- p.87 / Chapter 3.2.6 --- Change of Relative Growth and Viability of HL-60 with Time --- p.90 / Chapter 3.2.6.1 --- TNF + Fixed-temperature Hyperthermia / Chapter 3.2.6.2 --- TNF + Step-down Hyperthermia2 / Chapter 3.2.6.3 --- TNF + Step-down hyperthermia3 / Chapter 3.3 --- Cell Death Pathway --- p.96 / Chapter 3.3.1 --- Experiments on Ehrlich Ascitic Tumor (EAT) Cells --- p.96 / Chapter 3.3.2 --- Experiments on Human Leukemia (HL-60) Cells --- p.100 / Chapter 3.4 --- Experiment on Normal Cell --- p.104 / Chapter 3.5 --- Effect of TNF + Fixed-temperature Hyperthermia on the Cell Cycle Progression --- p.107 / Chapter 3.5.1 --- Different Times of TNF Administration and Distribution of EAT cells in Cell cycle --- p.107 / Chapter 3.5.2 --- Different Times of TNF Administration and Distribution of HL-60 cells in Cell Cycle --- p.114 / Chapter 3.5.3 --- Shift of Cells Cycle after TNF Treatment --- p.120 / Chapter 3.5.3.1 --- Response of Ehrlich Ascitic Tumor Cells / Chapter 3.5.3.2 --- Response of Human leukemia Cells / Chapter 3.6 --- Effectiveness of Treatments in vivo: --- p.129 / Chapter 3.6.1 --- Dose-dependent Response --- p.129 / Chapter 3.6.2 --- Change of Body Temperature During Hyperthermia --- p.131 / Chapter 3.6.3 --- Comparison of Effectiveness of Various Treatments in vivo --- p.133 / Chapter 3.6.4 --- Synergistic Effect Between rhTNF-α and Hyperthermia in vivo --- p.135 / Chapter Chapter Four: --- Discussion --- p.138 / Chapter 4.1 --- Optimal Sequence of Treatments --- p.139 / Chapter 4.2 --- Comparison of Various Treatments --- p.143 / Chapter 4.3 --- Distribution of Cells in Cell Cycle Phases --- p.149 / Chapter 4.4 --- In vivo Study --- p.153 / Chapter Chapter Five: --- References --- p.156

Identiferoai:union.ndltd.org:cuhk.edu.hk/oai:cuhk-dr:cuhk_322288
Date January 1998
ContributorsLam, Kai Yi., Chinese University of Hong Kong Graduate School. Division of Biochemistry.
Source SetsThe Chinese University of Hong Kong
LanguageEnglish, Chinese
Detected LanguageEnglish
TypeText, bibliography
Formatprint, 165 leaves : ill. (some mounted) ; 30 cm.
RightsUse of this resource is governed by the terms and conditions of the Creative Commons “Attribution-NonCommercial-NoDerivatives 4.0 International” License (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Page generated in 0.0126 seconds