Return to search

Towards real-time diffusion imaging : noise correction and inference of the human brain connectivity / Imagerie de diffusion en temps-réel : correction du bruit et inférence de la connectivité cérébrale

La plupart des constructeurs de systèmes d'imagerie par résonance magnétique (IRM) proposent un large choix d'applications de post-traitement sur les données IRM reconstruites a posteriori, mais très peu de ces applications peuvent être exécutées en temps réel pendant l'examen. Mises à part certaines solutions dédiées à l'IRM fonctionnelle permettant des expériences relativement simples ainsi que d'autres solutions pour l'IRM interventionnelle produisant des scans anatomiques pendant un acte de chirurgie, aucun outil n'a été développé pour l'IRM pondérée en diffusion (IRMd). Cependant, comme les examens d'IRMd sont extrêmement sensibles à des perturbations du système hardware ou à des perturbations provoquées par le sujet et qui induisent des données corrompues, il peut être intéressant d'investiguer la possibilité de reconstruire les données d'IRMd directement lors de l'examen. Cette thèse est dédiée à ce projet innovant. La contribution majeure de cette thèse a consisté en des solutions de débruitage des données d'IRMd en temps réel. En effet, le signal pondéré en diffusion peut être corrompu par un niveau élevé de bruit qui n'est plus gaussien, mais ricien ou chi non centré. Après avoir réalisé un état de l'art détaillé de la littérature sur le bruit en IRM, nous avons étendu l'estimateur linéaire qui minimise l'erreur quadratique moyenne (LMMSE) et nous l'avons adapté à notre cadre de temps réel réalisé avec un filtre de Kalman. Nous avons comparé les performances de cette solution à celles d'un filtrage gaussien standard, difficile à implémenter car il nécessite une modification de la chaîne de reconstruction pour y être inséré immédiatement après la démodulation du signal acquis dans l'espace de Fourier. Nous avons aussi développé un filtre de Kalman parallèle qui permet d'appréhender toute distribution de bruit et nous avons montré que ses performances étaient comparables à celles de notre méthode précédente utilisant un filtre de Kalman non parallèle. Enfin, nous avons investigué la faisabilité de réaliser une tractographie en temps-réel pour déterminer la connectivité structurelle en direct, pendant l'examen. Nous espérons que ce panel de développements méthodologiques permettra d'améliorer et d'accélérer le diagnostic en cas d'urgence pour vérifier l'état des faisceaux de fibres de la substance blanche. / Most magnetic resonance imaging (MRI) system manufacturers propose a huge set of software applications to post-process the reconstructed MRI data a posteriori, but few of them can run in real-time during the ongoing scan. To our knowledge, apart from solutions dedicated to functional MRI allowing relatively simple experiments or for interventional MRI to perform anatomical scans during surgery, no tool has been developed in the field of diffusion-weighted MRI (dMRI). However, because dMRI scans are extremely sensitive to lots of hardware or subject-based perturbations inducing corrupted data, it can be interesting to investigate the possibility of processing dMRI data directly during the ongoing scan and this thesis is dedicated to this challenging topic. The major contribution of this thesis aimed at providing solutions to denoise dMRI data in real-time. Indeed, the diffusion-weighted signal may be corrupted by a significant level of noise which is not Gaussian anymore, but Rician or noncentral chi. After making a detailed review of the literature, we extended the linear minimum mean square error (LMMSE) estimator and adapted it to our real-time framework with a Kalman filter. We compared its efficiency to the standard Gaussian filtering, difficult to implement, as it requires a modification of the reconstruction pipeline to insert the filter immediately after the demodulation of the acquired signal in the Fourier space. We also developed a parallel Kalman filter to deal with any noise distribution and we showed that its efficiency was quite comparable to the non parallel Kalman filter approach. Last, we addressed the feasibility of performing tractography in real-time in order to infer the structural connectivity online. We hope that this set of methodological developments will help improving and accelerating a diagnosis in case of emergency to check the integrity of white matter fiber bundles.

Identiferoai:union.ndltd.org:theses.fr/2013PA112058
Date30 April 2013
CreatorsBrion, Véronique
ContributorsParis 11, Poupon, Cyril
Source SetsDépôt national des thèses électroniques françaises
LanguageEnglish
Detected LanguageFrench
TypeElectronic Thesis or Dissertation, Text, Image, StillImage

Page generated in 0.0022 seconds