This diploma thesis focuses on the fabrication of ceramic fibres by electrospinning. The theoretical part of the thesis summarizes the currently available information regarding ceramic fibres, their properties, applications and fabrication. The theoretical part also describes the process of electrospinning as one of the most frequently used methods of nanofibre fabrication, as well as the parametres influencing this process. The experimental part is aimed at the fabrication of ceramic fibres based on titania, pure non-doped zirconia and yttria-doped zirconia by electrospinning and at the characterization of thus fabricated fibres. Ceramic precursors based on propoxide and polyvinylpyrrolidone were subjected to electrospinning. The experimental part of this diploma thesis also describes the influence of precursor composition, process conditions and calcination temperature on the morphology and phase composition of the fibres. Precursors were characterized by viscosity measurements. Thermogravimetric analysis (TGA), Röntgen analysis (RTG) and scanning electron microscopy (SEM) were used to describe the fibres. By performing electrospinning of precursors based on titanium propoxide and subsequent calcination at 500-1300 °C, TiO2 fibres with thickness of 100-2500 nm were fabricated. The phase composition changed with calcination temperature from 500 °C from anatase phase through rutile blend to pure rutile at 900 °C. By performing electrospinning of precursors based on zirconium propoxide and subsequent calcination at 550-1100 °C, 0 – 8 mol% Y2O3 doped ZrO2 fibres with thickness of 50-1000 nm were fabricated. An analysis of fibres based on non-doped ZrO2, calcined at 550 °C showed a composition of predominantly monoclinic phase. An analysis of 3 or 8 mol% Y2O3 doped ZrO2 fibres calcined at 900 °C showed a composition of predominantly tetragonal phase or purely cubic phase, respectively. With the increasing calcination temperature, the morphology of the fibres changed from porous nanostructure to chain-like non-porous structure consisting of micrometer grains of TiO2 or ZrO2. The ZrO2 fibres calcined at 700 °C remained flexible as well as the spun ones, while their fragility increased with the increase in calcination temperature.
Identifer | oai:union.ndltd.org:nusl.cz/oai:invenio.nusl.cz:318381 |
Date | January 2017 |
Creators | Nemčovský, Jakub |
Contributors | Kaštyl, Jaroslav, Částková, Klára |
Publisher | Vysoké učení technické v Brně. Fakulta strojního inženýrství |
Source Sets | Czech ETDs |
Language | Czech |
Detected Language | English |
Type | info:eu-repo/semantics/masterThesis |
Rights | info:eu-repo/semantics/restrictedAccess |
Page generated in 0.0023 seconds