Return to search

Particle Dynamics and Particle-Cell Interaction in Microfluidic Systems

Particle-laden flow in a microchannel resulting in aggregation of microparticles was investigated to determine the dependence of the cluster growth rate on the following parameters: suspension void fraction, shear strain rate, and channel-height to particle-diameter ratio. The growth rate of an average cluster was found to increase linearly with suspension void fraction, and to obey a power-law relationships with shear strain rate as S^0.9 and channel-height to particle-diameter ratio as (h/d)^-3.5. Ceramic liposomal nanoparticles and silica microparticles were functionalized with antibodies that act as targeting ligands. The bio-functionality and physical integrity of the cerasomes were characterized. Surface functionalization allows cerasomes to deliver drugs with selectivity and specificity that is not possible using standard liposomes. The functionalized particle-target cell binding process was characterized using BT-20 breast cancer cells. Two microfluidic systems were used; one with both species in suspension, the other with cells immobilized inside a microchannel and particle suspension as the mobile phase. Effects of incubation time, particle concentration, and shear strain rate on particle-cell binding were investigated. With both species in suspension, the particle-cell binding process was found to be reasonably well-described by a first-order model. Particle desorption and cellular loss of binding affinity in time were found to be negligible; cell-particle-cell interaction was identified as the limiting mechanism in particle-cell binding. Findings suggest that separation of a bound particle from a cell may be detrimental to cellular binding affinity. Cell-particle-cell interactions were prevented by immobilizing cells inside a microchannel. The initial stage of particle-cell binding was investigated and was again found to be reasonably well-described by a first-order model. For both systems, the time constant was found to be inversely proportional to particle concentration. The second system revealed the time constant to obey a power-law relationship with shear strain rate as τ∝S^.37±.06. Under appropriate scaling, the behavior displayed in both systems is well-described by the same exponential curve. Identification of the appropriate scaling parameters allows for extrapolation and requires only two empirical values. This could provide a major head-start in any dosage optimization studies.

Identiferoai:union.ndltd.org:arizona.edu/oai:arizona.openrepository.com:10150/308886
Date January 2013
CreatorsStamm, Matthew T.
ContributorsZohar, Yitshak, Zohar, Yitshak, Wong, Pak Kim, Wu, Xiaoyi
PublisherThe University of Arizona.
Source SetsUniversity of Arizona
Languageen_US
Detected LanguageEnglish
Typetext, Electronic Dissertation
RightsCopyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.

Page generated in 0.0091 seconds