Return to search

On the pathophysiology of idiopathic adult hydrosephalus syndrome : energy metabolism, protein patterns, and intracranial pressure

The symptoms in Idiopathic Adult Hydrocephalus Syndrome (IAHS) – gait disturbance, incontinence, and cognitive deficit – correlate anatomically to neuronal dysfunction in periventricular white matter. The pathophysiology is considered to include a cerebrospinal fluid (CSF) hydrodynamic disturbance, including pressure oscillations (“B waves”), in combination with cerebrovascular disease. IAHS and Subcortical Arteriosclerotic Encephalopathy (SAE) show clinical similarities, which constitutes a diagnostic problem. The aim of this thesis was to investigate biochemical markers in CSF, possibly related to the pathophysiology, and their usefulness in diagnosis, to investigate the effect of ICP changes on glucose supply and metabolism in periventricular deep white matter, and to present criteria for objective, computerised methods for evaluating the content of B waves in an intracranial pressure (ICP) registration. CSF samples from 62 IAHS patients, 26 SAE patients, and 23 controls were analysed for sulfatide, total-tau (T-tau) hyperphosphorylated tau (P-tau), neurofilament protein light (NFL), and beta-amyloid-42 (Aß42). In ten IAHS patients, recordings of ICP, brain tissue oxygen tension (PtiO2), and samplings of brain extracellular fluid from periventricular white matter by way of microdialysis were performed, at rest and during a CSF infusion and tap test. Microdialysis samples were analysed for glucose, lactate, pyruvate, glutamate, glycerol, and urea. Patterns before and after spinal tap were analysed and changes from increasing ICP during the infusion test were described. The long term ICP registration was used to evaluate two computerised methods according to optimal amplitude threshold, monitoring time, and correlation to the manual visual method. In CSF, NFL was elevated in both IAHS and SAE patients, reflecting the axonal damage. In a multinominal logistic regression model, the combined pattern of high NFL, low P-tau and low Aß42 in CSF was shown to be highly predictive in distinguishing between IAHS, SAE and controls. Analysis of microdialysis samples for glucose, lactate, and pyruvate showed, in combination with PtiO2, a pattern of low-grade ischemia. After the spinal tap of CSF, the pattern changed, indicating increased glucose metabolic rate. During the infusion test, there were prompt decreases in the microdialysis values of glucose, lactate and pyruvate during ICP increase, but no sign of hypoxia. The values normalised immediately when ICP was lowered, indicating that the infusion test is not causing damage. One of the computerised methods, with an amplitude threshold set to 1 mm Hg, was shown robust in evaluating B wave content in an ICP registration. At least 5 hours registration time was needed. The highly predictive pattern of biochemical markers in CSF indicates a possibility of identifying simple tests in diagnosing and selecting patients for surgical treatment. The results of microdialysis and PtiO2 indicate low-grade ischemia in the periventricular white matter, which is ameliorated from CSF removal, and that glucose supply and metabolism are sensitive to short-term ICP elevations, thus proposing a link between ICP oscillations and symptoms from neuronal disturbance. A computerised method for evaluation of B waves is a prerequisite for evaluating the impact of pressure oscillations in the pathophysiology of IAHS.

Identiferoai:union.ndltd.org:UPSALLA1/oai:DiVA.org:umu-520
Date January 2005
CreatorsÅgren Wilsson, Aina
PublisherUmeå universitet, Neurologi, Umeå universitet, Strålningsvetenskaper
Source SetsDiVA Archive at Upsalla University
LanguageEnglish
Detected LanguageEnglish
TypeDoctoral thesis, comprehensive summary, info:eu-repo/semantics/doctoralThesis, text
Formatapplication/pdf
Rightsinfo:eu-repo/semantics/openAccess
RelationUmeå University medical dissertations, 0346-6612 ; 955

Page generated in 0.0021 seconds