Return to search

The Role of Chibby as a Potential Tumor Suppressor Gene in Human Cervical Cancer

The Wnt signaling pathway is highly conserved and participates in many important cellular functions including differentiation, embryonic development and tissue generations. £]-catenin, the central mediator of the Wnt signaling, interacts with the TCF/LEF family of transcription factors in the nucleus and initiates downstream gene transcription. In addition, £]-catenin is known as a proto-oncogene implicated in numerous cancers including colorectal, cervical, endometrial and skin cancer. Chibby (Cby) is evolutionarily conserved in many species and acts as a repressor of Wnt/£]-catenin signaling. In our previous study, we have established that Cby over-expression attenuated £]-catenin translocation to nucleus and its transcriptional activity. Thus, it was hypothesized that Cby may possess potential tumor suppressing capabilities. In the present study, we first explored endogenous Cby expression status in human cervical cancer cells: HeLa and SiHa cell lines. It was observed that Cby mRNA and protein levels were significantly down-regulated in both cancer lines compared with primary cervical cells. We then conducted functional assays of tumorigenicity on both cells using adenoviral-encoded Cby and its NLS (nuclear localization signaling) deleted variant (Cby∆NLS). It was found that gene delivery of Cby or Cby∆NLS inhibited the proliferation, invasiveness, and colony forming in HeLa and SiHa cells. Immunofluorescent analysis revealed that Cby or Cby∆NLS gene transfer reduced the expression of Ki-67, a cell proliferative marker. Furthermore, Cby or Cby∆NLS restoration induced apoptosis and perturbed cell cycle progression in both cervical cancer cells. Finally, Cby over-expression decreases the expression of £]-catenin/TCF4 regulated genes such as c-myc and PCNA, which might contributed to the anti-neoplastic mechanism for Cby in cervical cancer cell lines. Our results strongly suggest that Cby may serve as a tumor suppressor gene during cervical carcinogenesis, and may facilitate in creation of new therapeutic methods.

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0902110-170133
Date02 September 2010
CreatorsHuang, Yen-Lin
ContributorsYi-Ren Hong, Long-Sheng Chang, Ming-Hong Tai
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0902110-170133
Rightsoff_campus_withheld, Copyright information available at source archive

Page generated in 0.0017 seconds