Les étoiles massives, de type O ou B, sont d'une importance capitale pour le budget énergétique des galaxies et l'enrichissement du milieu interstellaire. Néanmoins, leur formation, contrairement à celle des étoiles de type solaire reste sujet à débats, sinon une énigme. Les toutes premières étapes de la formation des étoiles massives ainsi que la formation de leur nuage parent sont des thèmes qui stimulent une grande activité sur les plans théorique et observationnel depuis une décennie. Il semble maintenant acquis que les étoiles massives naissent dans des cœurs denses massifs, qui se forment au travers de processus dynamiques, tels que les flots de gaz collisionnels. Au cours de ma thèse, j'ai mené une étude approfondie de la formation des cœurs denses et des étoiles massives au sein de la structure hypermassive W43-MM1, localisée à 6~kpc du soleil. Dans un premier temps, j'ai montré une corrélation directe entre l'efficacité à former des étoiles et la densité volumique des nuages moléculaires, en décalage avec un certain nombre d'études précédentes. En effet, la distribution spatiale et de masse des cœurs denses massifs en formation au sein de W43-MM1 suggère que ce filament hypermassif est en phase de flambée de formation d'étoiles, flambée d'autant plus grande que l'on se rapproche de son cœur. J'ai comparé ces résultats observationnels aux modèles numériques et analytiques d'efficacité de formation stellaire les plus récents. Cette confrontation permet non seulement d'apporter de nouvelles contraintes sur la formation des filaments hypermassifs, mais suggère aussi que la compréhension de la formation d'étoiles dans les nuages hypermassifs nécessite une description fine de la structure de ces objets exceptionnels. En second lieu, ayant montré que la formation des étoiles massives est fortement dépendante des propriétés des filaments qui les forment, je me suis naturellement intéressé aux processus de formation de ces filaments, grâce à une étude de leur dynamique globale. Plus précisément, j'ai utilisé un traceur de chocs (la molécule de SiO) pour discerner les chocs dûs aux processus locaux de formation des étoiles (jets et flots bipolaires), des chocs dûs aux processus permettant la formation du nuage. J'ai ainsi pu, via une étude sans précédent alliant observations et modélisation de chocs dans une région formant de nombreuses étoiles, montrer l'existence de chocs à basse vitesse, première signature directe de la formation du nuage moléculaire dans lequel les étoiles massives se forment. Ces résultats constituent une étape importante reliant, via des processus dynamiques, la formation des nuages moléculaires à la formation des étoiles massives. / O and B types stars are of paramount importance in the energy budget of galaxies and play a crucial role enriching the interstellar medium. However, their formation, unlike that of solar-type stars, is still subject to debate, if not an enigma. The earliest stages of massive star formation and the formation of their parent cloud are still crucial astrophysical questions that drew a lot of attention in the community, both from the theoretical and observational perspective, during the last decade. It has been proposed that massive stars are born in massive dense cores that form through very dynamic processes, such as converging flows of gas. During my PhD, I conducted a thorough study of the formation of dense cores and massive stars in the W43-MM1 supermassive structure, located at ~ 6 kpc from the sun. At first, I showed a direct correlation between the star formation efficiency and the volume gas density of molecular clouds, in contrast with scenarii suggested by previous studies. Indeed, the spatial distribution and mass function of the massive dense cores currently forming in W43-MM1 suggests that this supermassive filament is undergoing a star formation burst, increasing as one approaches its center. I compared these observational results with the most recent numerical and analytical models of star formation. This comparison not only provides new constraints on the formation of supermassive filaments, but also suggests that understanding star formation in high density, extreme ridges requires a detailed portrait of the structure of these exceptional objects. Second, having shown that the formation of massive stars depends strongly on the properties of the ridges where they form, I studied the formation processes of these filaments, thanks of the characterization of their global dynamics. Specifically, I used a tracer of shocks (SiO molecule) to disentangle the feedback of local star formation processes (bipolar jets and outflows) from shocks tracing the pristine formation processes of the W43-MM1 cloud. I was able, via an unprecedented study combining observations and modeling of shocks in a starbust region, to show the existence of widespread low velocity shocks, that are the first direct signature of the formation of the massive molecular cloud from which massive stars form.These results are an important step connecting, via dynamical processes, the formation of molecular clouds to the formation of massive stars.
Identifer | oai:union.ndltd.org:theses.fr/2014PA112230 |
Date | 22 September 2014 |
Creators | Louvet, Fabien |
Contributors | Paris 11, André, Philippe |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text, Image, StillImage |
Page generated in 0.0029 seconds