Study of the mammalian auditory system suggests that processes once thought exclusive to cortical structures also operate subcortically. Recently, this observation has extended to the detection of acoustic change. This thesis uses methods designed for the concurrent capture of auditory-evoked potential (AEP) components attributed to different subcortical and cortical sources. Using such an approach, Chapter 2 shows that 2-month-old infants respond to infrequent changes in sound source location with neural activity implicating both subcortically- and cortically-driven mechanisms of change-detection. Chapter 3 describes the development of a new stimulation protocol and presents normative data from adult listeners showing that the morphologies of several well-known subcortical and cortical AEP components are related. Finally, Chapter 4 uses the new methods developed in Chapter 3 to demonstrate that stimulus regularity not only affects neural activity at both subcortical and cortical structures, but that the activity localized to these structures is linked. Together, the studies presented in this thesis emphasize the potential for existing technologies to study the interaction of subcortical and cortical processing in human listeners. Moreover, the results of Chapters 2 through 4 lend support to models wherein change-detection is considered a distributed, and perhaps fundamental, attribute of the auditory hierarchy. / Thesis / Doctor of Philosophy (PhD)
Identifer | oai:union.ndltd.org:mcmaster.ca/oai:macsphere.mcmaster.ca:11375/22797 |
Date | January 2018 |
Creators | Slugocki, Christopher |
Contributors | Trainor, Laurel, J., Psychology |
Source Sets | McMaster University |
Language | English |
Detected Language | English |
Type | Thesis |
Page generated in 0.0021 seconds