This thesis attempts to address the problem of how best to remedy different types of channel distortions on speech when that speech is to be used in automatic speaker recognition and verification systems. Automatic speaker recognition is when a person's voice is analysed by a machine and the person's identity is worked out by the comparison of speech features to a known set of speech features. Automatic speaker verification is when a person claims an identity and the machine determines if that claimed identity is correct or whether that person is an impostor. Channel distortion occurs whenever information is sent electronically through any type of channel whether that channel is a basic wired telephone channel or a wireless channel. The types of distortion that can corrupt the information include time-variant or time-invariant filtering of the information or the addition of 'thermal noise' to the information, both of these types of distortion can cause varying degrees of error in information being received and analysed. The experiments presented in this thesis investigate the effects of channel distortion on the average speaker recognition rates and testing the effectiveness of various channel compensation algorithms designed to mitigate the effects of channel distortion. The speaker recognition system was represented by a basic recognition algorithm consisting of: speech analysis, extraction of feature vectors in the form of the Mel-Cepstral Coefficients, and a classification part based on the minimum distance rule. Two types of channel distortion were investigated: Convolutional (or lowpass filtering) effects Addition of white Gaussian noise Three different methods of channel compensation were tested: Cepstral Mean Subtraction (CMS) RelAtive SpecTrAl (RASTA) Processing Constant Modulus Algorithm (CMA) The results from the experiments showed that for both CMS and RASTA processing that filtering at low cutoff frequencies, (3 or 4 kHz), produced improvements in the average speaker recognition rates compared to speech with no compensation. The levels of improvement due to RASTA processing were higher than the levels achieved due to the CMS method. Neither the CMS or RASTA methods were able to improve accuracy of the speaker recognition system for cutoff frequencies of 5 kHz, 6 kHz or 7 kHz. In the case of noisy speech all methods analysed were able to compensate for high SNR of 40 dB and 30 dB and only RASTA processing was able to compensate and improve the average recognition rate for speech corrupted with a high level of noise (SNR of 20 dB and 10 dB).
Identifer | oai:union.ndltd.org:ADTP/210321 |
Date | January 2007 |
Creators | Neville, Katrina Lee, katrina.neville@rmit.edu.au |
Publisher | RMIT University. Electrical and Computer Engineering |
Source Sets | Australiasian Digital Theses Program |
Language | English |
Detected Language | English |
Rights | http://www.rmit.edu.au/help/disclaimer, Copyright Katrina Lee Neville |
Page generated in 0.0022 seconds