Cooperative systems exploit spatial diversity to improve communication quality. But system performances could be severely degraded in the existance malicious relay nodes. In this thesis, we consider a two-relay decode-and-forward (DF) cooperative network. Relay nodes adopt Orthogonal Space Time Block Code (OSTBC) to achieve spatial diversity. Assume that relay nodes may misbehave with a certain probability. If a relay is malicious, it will garble transmission signals, resulting in severe damage to system performance. In the literature, detecting malicious relays requires perfect channel state information. However, misbehavior of the relay will first lead to inaccurate channel estimation. Therefore, we propose a novel detecting misbehavior scheme to deal with the dilemma. Since misbehavior of relays influences statistical properties of the estimated channel coefficients, destination can detect misbehaving by comparing the distribution of channel estimates. The most important of all is that we don¡¦t need channel state information to enhance detecting performance. Through simulation results, we verify proposed scheme can detect misbehavior effectively without channel state information. Compared with signal-to-noise ratio, the number of received tracing symbols has more significant impact on detecting misbehavior of the relay.
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0824111-143758 |
Date | 24 August 2011 |
Creators | Wang, Zhao-Jie |
Contributors | Wan-Jen Huang, Wenson Chang, Chao-Kai Wen, Tsang-Yi Wang |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0824111-143758 |
Rights | unrestricted, Copyright information available at source archive |
Page generated in 0.0018 seconds