Return to search

Jordan Isomorphisms and Jordan Derivations of Prime Rings with characteristic 2

In this thesis, we describe the Jordan isomorphisms and Jordan derivations on prime rings of characteristic 2. We prove that every Jordan isomorphism of M_{n}(F),n >= 3 is either an isomorphism or an antiisomorphism if n is odd, and it is not true if n is even.
We also describe the Jordan isomorphisms and Jordan derivations on M_{2}(GF(2)).

Identiferoai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0624104-213250
Date24 June 2004
CreatorsTsai, Chia-Fang
ContributorsTsai-Lien Wong, Jhishen Tsay, Li-Da Tong, Xuding Zhu
PublisherNSYSU
Source SetsNSYSU Electronic Thesis and Dissertation Archive
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0624104-213250
Rightsunrestricted, Copyright information available at source archive

Page generated in 0.0018 seconds