<p>Previous studies of agricultural conditions in the Mekong Delta (MD) have identified soil compaction as an obstacle to sustainable production. A conceptual model for soil formation was presented to demonstrate the link between soil hydrology and plant response. Detailed studies of soil moisture dynamics in agricultural fields were conducted using a dynamic process-orientated model. Pressure head and water flow were simulated for three selected sites during a year for which empirical data were available. Daily meteorological data were used as dynamic input and measured pressure head was used to estimate parameter values that satisfied various acceptance criteria. The Generalised Likelihood Uncertainty Estimation (GLUE) approach was applied for calibration procedures with 10,000 runs, each run using random values within the chosen range of parameter values. To evaluate model performance and uncertainty estimation, re-sampling was carried out using coefficient of determination (R2) and mean error (ME) as the criteria. Correlations between parameters and R2 (and ME) and among parameters were also considered to analyse the relationship of the selected parameter set in response to increases/decreases in the acceptable simulations. The method was successful for two of the three sites, with many accepted simulations. For these sites, the uncertainty was reduced and it was possible to quantify the importance of the different parameters.</p><p> </p>
Identifer | oai:union.ndltd.org:UPSALLA/oai:DiVA.org:kth-10508 |
Date | January 2009 |
Creators | van Quang, Pham |
Publisher | KTH, Land and Water Resources Engineering |
Source Sets | DiVA Archive at Upsalla University |
Language | English |
Detected Language | English |
Type | Licentiate thesis, monograph, text |
Relation | Trita-LWR. LIC, 1650-8629 ; 2046 |
Page generated in 0.0017 seconds