Return to search

Rationalizing Structure, Stability, and Chemical Bonding of Pure and Doped Clusters, Isolatied and Sovanted Multiply Charged Anions, and Solid State Materials

Chemistry is the study of materials and the changes that materials undergo. One can tune the properties of the known materials and design the novel materials with desired properties knowing what is responsible for the chemical reactivity, structure, and stability of those materials. The unified chemical bonding theory could address all these questions, but we do not have one available yet. The most accepted general theory of chemical bonding was proposed by Lewis in 1916, though Lewis’s theory fails to explain the bonding in materials with delocalized electron density such as sub-nano and nanoclusters, as well as aromatic organic and organometallic molecules. The dissertation presents a set of projects that can be considered the steps towards the development of the unified chemical bonding theory by extending the ideas of Lewis. The dissertation also presents the studies of the properties of multiply charged anions, which tend to undergo Coulomb explosion in the isolated state and release the excess energy stored in them. It is shown how the properties of multiply charged anions can be tuned upon changing the chemical identity of the species or interaction with solvent molecules. Our findings led to the discovery of a new long-lived triply charged anionic species, whose metastability was explained by the existence of a repulsive Coulomb barrier. We also proposed two ways to restore high symmetry of compounds by suppression of the pseudo Jahn-Teller effect, which could lead to the design of new materials with the restored symmetry and therefore the novel properties.

Identiferoai:union.ndltd.org:UTAHS/oai:digitalcommons.usu.edu:etd-2233
Date01 May 2012
CreatorsSergeeva, Alina P.
PublisherDigitalCommons@USU
Source SetsUtah State University
Detected LanguageEnglish
Typetext
Formatapplication/pdf
SourceAll Graduate Theses and Dissertations
RightsCopyright for this work is held by the author. Transmission or reproduction of materials protected by copyright beyond that allowed by fair use requires the written permission of the copyright owners. Works not in the public domain cannot be commercially exploited without permission of the copyright owner. Responsibility for any use rests exclusively with the user. For more information contact Andrew Wesolek (andrew.wesolek@usu.edu).

Page generated in 0.0021 seconds