La stabilité gravitaire des ouvrages hydrauliques (digues fluviales, barrage en remblai, ...) est un problème complexifié par la présence d'infiltration d'eau au sein même de l'ouvrage et de ses fondations. Le territoire national compte près de 10000 km de digues, d'où un enjeu important en terme de risque d'inondation. Les déstabilisations gravitaires observées sur les ouvrages hydrauliques se distinguent par leur brièveté et par leur faible emprise spatiale. L'objectif de ce travail de thèse est d'étudier spécifiquement ces instabilités brèves et de faible déplacement cumulé le long de la pente dans le cas de matériaux granulaires saturés. Dans un premier temps, une campagne expérimentale a été effectuée sur la base d'un protocole de chargement progressif dans lequel un échantillon de sol est lentement incliné jusqu'à obtenir une déstabilisation massive. Il en ressort une phénoménologie complexe composée d'un nombre de précurseurs d'avalanche dépendant de la fraction volumique de l'échantillon. Une forte influence de la fraction volumique du sol sur le seuil de stabilité est également mise en avant. Une deuxième campagne expérimentale basée sur un protocole d'effondrement contrôlé, à inclinaison imposée, a été menée dans le but d'amplifier la cinématique de déstabilisation observée en chargement progressif. Mis à part les échantillons les plus denses qui produisent de simples avalanches de surface, on observe dans les autres cas un ou plusieurs événements successifs, d'allure circulaire, mobilisant des profondeurs très importantes contrairement aux avalanches de surface.. Outre l'inclinaison, on voit bien que, là encore, la fraction volumique est un paramètre clé dans le contrôle de la cinématique de déstabilisation. Des essais préliminaires laissent cependant entendre que, au-delà de la fraction volumique, c'est la microstructure qui semble être le vrai paramètre de contrôle à travers notamment la forme des grains et leur enchevêtrement. / Gravitational stability of hydraulic structures (river dykes, embankment dam,...) is a problem complicated by the presence of water infiltration within the structure and its foundations. Our country has about 10,000 km of dikes and gravitational failure is a major challenge in terms of flood risk. In hydraulic structures, these destabilizations are characterized by their brevity and their small spatial extent. The objective of this thesis is to study specifically this type of brief instabilities in the case of a saturated granular material. A first series of experiments was carried out on the basis of a progressive loading protocol in which a soil sample is tilted slowly until a massive destabilization is triggered. It shows a phenomenology complex consisting of a number of precursory events prior final avalanching, dependent on the solid volume fraction of the sample. A strong impact of the solid volume fraction of the soil on the stability threshold is also highlighted. A second series of experiments based on a protocol of collapse controlled at imposed slope was conducted to amplify the kinematics of destabilization observed by progressive loading. Apart from the denser samples that produce simple surface avalanches, one or more successive events are observed in other cases. Unlike surface avalanches, these events mobilize grains much deeper, in an almost semi-circular area. In addition to slope angle, solid volume fraction is once again a key parameter in controlling the kinematics of destabilization. Preliminary tests suggest, however, that, beyond solid volume fraction, microstructure appears to be the true control parameter, particularly through grain shape and texture.
Identifer | oai:union.ndltd.org:theses.fr/2012GRENI026 |
Date | 30 October 2012 |
Creators | Bonnet, Félix |
Contributors | Grenoble, Nicot, François, Philippe, Pierre |
Source Sets | Dépôt national des thèses électroniques françaises |
Language | French |
Detected Language | French |
Type | Electronic Thesis or Dissertation, Text |
Page generated in 0.0028 seconds