Return to search

iAIML: um mecanismo para o tratamento de intenção em Chatterbots

Made available in DSpace on 2014-06-12T15:54:30Z (GMT). No. of bitstreams: 2
arquivo7155_1.pdf: 666963 bytes, checksum: 56eeb6eb903215d0a8b285686ffe780a (MD5)
license.txt: 1748 bytes, checksum: 8a4605be74aa9ea9d79846c1fba20a33 (MD5)
Previous issue date: 2005 / O trabalho de pesquisa aqui apresentado teve como objetivo principal melhorar o desempenho de chatterbots em diálogos livres com usuários. Chatterbots são sistemas computacionais que se propõem a conversar em linguagem natural como se fossem humanos. O primeiro desses sistemas foi ELIZA, desenvolvido em 1965 por Weizenbaum. Desde então, inúmeros sistemas foram produzidos com esse mesmo objetivo. Porém, uma série de problemas ainda continuam em aberto, dentre os quais, o tratamento de intenção, questão central na interpretação de diálogos naturais. Nesse sentido, desenvolvemos um mecanismo para tratamento de intenção para ser incorporado a chatterbots baseados em AIML. Adotamos como base conceitual para o trabalho a Teoria da Análise da Conversação (TAC), por considerar a intenção em pares adjacentes, e não apenas na sentença do falante, como a Teoria dos Atos de Fala. Com base na TAC e em experimentos realizados, selecionamos um conjunto de intenções, que foram utilizadas na criação de regras em AIML que utilizam informações de intencionalidade para interpretar e gerar sentenças em diálogos naturais. A solução final foi testada em uma série de experimentos, e demonstrou ser capaz de corrigir alguns problemas presentes em diálogos com chatterbots. Por exemplo, o sistema baseado em AIML padrão tratou 40% das sentenças dos usuários como sendo desconhecidas, enquanto o nosso sistema classificou apenas 3,5% das sentenças como totalmente desconhecidas. Além disso, o sistema foi capaz de manter a estrutura global dos diálogos, criticando turnos de abertura ou fechamento que foram ditos no desenvolvimento, ou turnos de desenvolvimento ditos na abertura ou fechamento. Por fim, implementamos três aplicações com chatterbots, o que demonstra que a solução adotada favorece o reuso de categorias em bases AIML, processo extremamente custoso do ponto de vista de engenharia de software com os sistemas atuais

Identiferoai:union.ndltd.org:IBICT/oai:repositorio.ufpe.br:123456789/2095
Date January 2005
CreatorsMenezes Marques das Neves, André
Contributorsde Almeida Barros, Flávia
PublisherUniversidade Federal de Pernambuco
Source SetsIBICT Brazilian ETDs
LanguagePortuguese
Detected LanguagePortuguese
Typeinfo:eu-repo/semantics/publishedVersion, info:eu-repo/semantics/doctoralThesis
Sourcereponame:Repositório Institucional da UFPE, instname:Universidade Federal de Pernambuco, instacron:UFPE
Rightsinfo:eu-repo/semantics/openAccess

Page generated in 0.002 seconds