The objective of this study was to investigate the exposure assessment and health risk of particulate matter emitted from steel industry for high-risk inhabitants living in metro Kaohsiung. A steel plant and an electric arc plant were selected for conducting the sampling of particulate matter (PM). The physical and chemical properties of PM sampled at the working place and at the fence of selected plants were also analyzed to establish the fingerprints of PM in the steel industry. In order to accomplish this study, both personal sampling and environmental sampling were conducted in steel plants. Personal exposure sampling was undertaken at working places, while the conduction of environmental sampling might affected by various uncertain environmental factors (such as meteorological condition and other emission sources), but it could characterize the overall environmental situation and help exposure assessment. Moreover, The exposure of employers (including manufacturing workers and supporting staffs) could be further assessed based on the concentration and duration of PM exposure. Specific metal concentration was obtained from working environment, searching for exposure parameter (such as exposure frequency, exposure duration, body weight, average time, and etc.) and toxicity database (e.g. cancer slope factor and reference dose). The data could be used for assessing both cancer risk and non-cancer risk of specific heavy metal.
Sampling data obtained from working places showed that the highest PM concentration were observed during the electric arc process, especially the charging and discharging procedures. The concentration of PM1.0, PM10, and TSP at the working places were 53.3~195.6 £gg/m3 ,365.7~550.0 £gg/m3, and 1085.5~2755.0 £gg/m3, respectively. Measured at the outdoor environments of working places, the highest PM10 and TSP concentration, ranging from 365.7~550.0 £gg/m3 and 1085.5 ~2755.0 £gg/m3, were observed at the sinter plants of a steel manufacturer. Sampling data obtained at the fence of steel plants (a steel plant and electric arc plant) indicated that the concentration of PM10 and TSP exceeded the ambient air quality standards. Modification of manufacturing process and improvement of PM collection system are highly required to reduce the concentration level as well as the emission of PM.
Results of fingerprint of PM (PM2.5, PM2.5-10, TSP) obtained from working places showed that iron, calcium, sulfate, nitrate, calcium ion, and elemental carbon were the major chemical content of PM at the melting plant, the sinter plant, and the storage field. While, iron, calcium, sulfate, nitrate, calcium ion, and organic carbon were the major chemical content of PM at electric arc plant.
Results of personal exposure concentration and exposure dose of PM showed that the highest exposure level of both manufacturing workers and supporting staffs were observed at the storage field, while the lowest exposure level was found at the sinter plant. Therefore, enforcement of wearing maskers and/or shelters at the storage field is also highly recommended to prevent manufacturing workers from the exposure of high-level PM at working places. Moreover, the cancer risk of manufacturing workers exposured to hexavalent chromium (Cr6+) at the melting plant, the sinter plant, the storage field, and the electric arc plant exceeded acceptable cancer risk standard (10-5~10-6), while the hazard index of manganese (Mn) was much higher than other metals.Meanwhile, exposuring to Cr6+, Ni, and Mn at the electric arc plant also exceeded acceptable standards (Cr6+ and Ni¡G10-5~10-6 , Mn¡G1).
Several control strategies, including pollution reduction measures such as the usage of clean fuel, process modification, the improvement of collection system, the enhancement of manufacture management, the conduction of environmental monitoring and exposure assessment, floor cleanup and truck entrance management, are recommended to improve the contamination of PM at working places and surrounding environments for metallurgic industries. Moreover, enforcement of wearing maskers and/or shelters at high-risk environments is also highly recommended to prevent manufacturing workers from the exposure of high-level PM at working places.
Keywords: steel industry, particulate matter sampling, physical and chemical characteristics, exposure assessment, health risk
Identifer | oai:union.ndltd.org:NSYSU/oai:NSYSU:etd-0824104-163533 |
Date | 24 August 2004 |
Creators | Her, Chia-Ta |
Contributors | S. J. Chen, Jeng Jong Liang, Chia Wei Lee, Chung shin Yuan |
Publisher | NSYSU |
Source Sets | NSYSU Electronic Thesis and Dissertation Archive |
Language | Cholon |
Detected Language | English |
Type | text |
Format | application/pdf |
Source | http://etd.lib.nsysu.edu.tw/ETD-db/ETD-search/view_etd?URN=etd-0824104-163533 |
Rights | off_campus_withheld, Copyright information available at source archive |
Page generated in 0.0022 seconds