Return to search

Electrochemical detection of chemical warfare agent simulants

This work attempted to detect chemical warfare agent (CWA) simulants via electrochemistry utilizing two approaches. The first approach consisted of a ferrocene (Fc) amino acid derivative film on Au surfaces. The molecule [(BocHN)Fc(CO)CSA]2 was electrodeposited onto Au microelectrodes through a SAu bond. Once immobilized, the Fc amino acid derivative was Boc deprotected allowing for the amino group to react with the target molecule. Detection of the target simulant was monitored by cyclic voltammetry (CV) while following the formal potential of the Fc molecule, which is influenced by its immediate electronic microenvironment. Reaction with either 1 mM diethyl cyanophosphonate (DECP) or 2 chloroethyl ethyl sulfide (2 CEES), both effectively simulants for the CWAs Tabun nerve agent and blistering sulfur mustard respectively, was not observed. However, detection of 1 mM acetyl chloride was achieved by observing a potential anodic shift from 217 ± 6 mV, for the Boc deprotected form, to 388 ± 7 mV for the reacted state of the molecule. The lack of reactivity with the Fc amino acid system was hypothesized as a kinetic issue.<p>
In the second approach, the electrochemistry of gas generated naked Ag nanoparticles (NPs) deposited on indium tin oxide covered glass plates is compared to bulk polycrystalline Ag. The nano specific electrochemistry of Ag NPs has been identified and includes the preferential formation of â oxides. In 100 mM KOH supporting electrolyte, disruption of â oxide formation is exploited to test for the presence of 1 mM DECP resulting in the dissolution of Ag via cyanide complexes leading to a CV signal decrease. While in 8.0 M KOH, â oxide formation is enhanced leading to testing capabilities for 1 mM 2 CEES resulting in the disappearance of the â oxide peak and the appearance of surface oxide peak during CV. Analogous electrochemistry is not observed on polycrystalline bulk Ag.

Identiferoai:union.ndltd.org:USASK/oai:usask.ca:etd-11242009-105901
Date04 December 2009
CreatorsMarenco, Armando J
ContributorsKraatz, Heinz-Bernhard
PublisherUniversity of Saskatchewan
Source SetsUniversity of Saskatchewan Library
LanguageEnglish
Detected LanguageEnglish
Typetext
Formatapplication/pdf
Sourcehttp://library.usask.ca/theses/available/etd-11242009-105901/
Rightsunrestricted, I hereby certify that, if appropriate, I have obtained and attached hereto a written permission statement from the owner(s) of each third party copyrighted matter to be included in my thesis, dissertation, or project report, allowing distribution as specified below. I certify that the version I submitted is the same as that approved by my advisory committee. I hereby grant to University of Saskatchewan or its agents the non-exclusive license to archive and make accessible, under the conditions specified below, my thesis, dissertation, or project report in whole or in part in all forms of media, now or hereafter known. I retain all other ownership rights to the copyright of the thesis, dissertation or project report. I also retain the right to use in future works (such as articles or books) all or part of this thesis, dissertation, or project report.

Page generated in 0.0023 seconds