The project has focused on the preparation of several series of compounds designed as potential HIV-1 integrase inhibitors. Various 2-nitrobenzaldehydes have been reacted with two activated alkenes, methyl vinyl ketone (MVK) and methyl acrylate, under Baylis-Hillman conditions to afford α-methylene-β-hydroxylalkyl derivatives in moderate to excellent yields. The reactions were conducted using the tertiary amine catalysts, 1,4-diazabicyclo[2.2.2]octane(DABCO) or 3-hydroxyquinuclidine (3-HQ) with chloroform as solvent, and yields were optimised by varying the catalyst, reagent concentrations and the reaction time. Reductive cyclization of the Baylis-Hillman adducts via catalytic hydrogenation, using 10% palladiumon-carbon catalyst in ethanol, afforded quinoline and quinoline N-oxide derivatives. In some cases “acyclic” reduction products were also isolated. Reaction of the Baylis-Hillman MVK adducts with HCl, has resulted in effective nucleophilic (SN’) displacement of the hydroxyl group to afford allylic chloride derivatives. Direct substitution of these chloro derivatives by secondary or primary amines, followed by catalytic hydrogenation gave quinoline derivatives containing a 3-aminomethyl substituent. The Baylis-Hillman ester adducts obtained from reaction with methyl acrylate were treated directly with various amines to give diastereomeric conjugate addition products. Reactions with piperazine gave N,N’-disubstituted piperazine products. The piperidine derivatives have been dehydrated to give cinnamate esters in moderate yields. The products, which have all been satisfactorily characterised by elemental (HRMS) and spectroscopic (1- and 2-D NMR) analysis, constitute a “library” of compounds for in silico and in vitro studies as potential HIV integrase inhibitors.
Identifer | oai:union.ndltd.org:netd.ac.za/oai:union.ndltd.org:rhodes/vital:4357 |
Date | January 2010 |
Creators | Lee, Yi-Chen |
Publisher | Rhodes University, Faculty of Science, Chemistry |
Source Sets | South African National ETD Portal |
Language | English |
Detected Language | English |
Type | Thesis, Masters, MSc |
Format | 97 p., pdf |
Rights | Lee, Yi-Chen |
Page generated in 0.002 seconds